Plant Programmed cell death | Encyclopedia.pub

Plant Programmed cell death

Subjects: Plant Sciences

Contributor: Raffaella Cerana

Programmed cell death (PCD) is a genetically controlled suicide process present in all living beings with the scope
of eliminating cells unnecessary or detrimental for the proper develop-ment of the organism. In plants, PCD plays a
pivotal role in many developmental processes such as sex determination, senescence, and aerenchyma formation

and is involved in the defense re-sponses against abiotic and biotic stresses.

cell cultures programmed cell death reactive oxygen species reactive nitrogen species

| 1. Introduction

Programmed cell death (PCD) is a genetically controlled suicide process present in all living beings with the scope
of eliminating cells unnecessary or detrimental for the proper development of the organism. PCD plays a pivotal
role in the plant lifestyle and it is involved in several developmental (senescence, formation of tracheary elements,
sex determination, aerenchyma formation, endosperm and aleuron maturation) and pathological contexts
(response to stresses and to pathogen attack) W2, Thus, its study is a main goal for plant scientists. PCD process
is organized in three phases. The first one is the induction phase, where the cells receive a wide range of extra- or
intracellular signals (developmental input, pathogen attack, signals from neighboring cells, abiotic or biotic
stresses). The second one is the effector phase, where the signals are elaborated to activate the death machinery.
The third one is the degradation phase, where the activity of the death machinery causes the controlled
destructuring of fundamental cell components [El. The degradation phase shows a set of hallmarks that can be
used to identify cells undergoing PCD. These hallmarks include shrinkage of cellular and nuclear membrane,
activation of specific cysteine proteases called caspases, and activation of specific endonucleases able to cleave
DNA in controlled fragments (laddering) . Unlike animals, where well-described forms of PCD (for example
apoptosis) are reported, in plants, the PCD process is still poorly understood and the term PCD is widely used to
describe cell death observed in different tissues and organs. At present, in plants, at least three forms of PCD have
been described and cataloged on the basis of both cellular morphology and the main cellular compartment involved
in the process. The “nucleus first form” is observable during the hypersensitive response to pathogen attack and it
is similar to animal apoptosis for the presence of specific hallmarks, involvement of mitochondria included. The
“chloroplast first form” is observable during foliar senescence, while the “vacuole first form” is observable during the

maturation of vascular elements and during aerenchyma formation HI=I6],

| 2. PCD Induced in Cell Cultures by Biotic Stress
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Several toxins and metabolic products obtained by microorganisms and fungi can induce PCD in cell cultures, as

summarized in Table 1.

Table 1. Biotic programmed cell death (PCD) inducers in plant cell cultures.
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Plant Species PCD Induced by Reference
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For example, in Acer pseupdoplatanus L.-cultured cells, tunicamycin, an inhibitor of N-linked protein glycosylation
produced by Streptomyces lysosuperificus, and brefeldin A, an inhibitor of protein trafficking from the Golgi
apparatus produced by Eupenicillium brefeldianum, induce a PCD with apoptotic features such as reactive oxygen
species (ROS) accumulation, changes in cell and nucleus morphology, and specific DNA fragmentation. In the
same experimental material, fusicoccin a well-known activator of the plasma membrane H*-ATPase produced by
Phomopsis amygdali induces PCD with similar characteristics. The well-identified target of these molecules
permitted to test the role of specific cell compartments or physiological functions in the induction, development, and
execution of plant PCD process. In particular, investigation conducted with fusicoccin showed that the phytotoxin-
induced PCD involves changes in actin cytoskeleton (24 and utilizes the plant hormone ethylene as regulative
molecule in addition to ROS and reactive nitrogen species (RNS) 23, Interestingly, inhibition of cytochrome c
release from the mitochondrion by cyclosporin A markedly prevents the fusicoccin-induced PCD (28], and recently a
possible role as signaling molecule for peroxynitrite has been proposed 4. These results also sustain the
fundamental role of cytochrome ¢ and peroxynitrite in the induction of PCD process in plants. In Arabidopsis
thaliana cultures, thaxtomin A, an inhibitor of cellulose biosynthesis produced by Streptomyces scabiei, induces a
PCD dependent on active gene transcription and de novo protein synthesis and that displays apoptotic-like
features such as specific DNA fragmentation. Interestingly, addition of auxin to Arabidopsis cell cultures prevents
thaxtomin-induced PCD possibly by stabilizing the plasma membrane—cell wall-cytoskeleton continuum (28, |n

tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2) cell suspensions metabolic products present in the
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Alternaria alternata culture filtrate induce a PCD dependent on ROS generation that shows cytoplasm shrinkage,
chromatin condensation, and DNA laddering. Interestingly, the PCD induced in tobacco BY-2 cells by
Pectobacterium carotovorum and Pectobacterium atrosepticum is reduced by culture filtrate of non-pathogenic
Streptomyces sp. OE7 that through cytosolic CaZ* changes and generation of ROS induces defense responses
(291 This highlights the complexity of the interactions between microorganisms and plants and the need for further
investigations. In tobacco cv. NC89-cultured cells, fusaric acid, a non-specific toxin produced mainly by Fusarium
spp., causes PCD with mechanism that is not well understood that, however, involves ROS overproduction and
mitochondrial dysfunction. In fact, pre-treatment of tobacco cells with the antioxidant molecule ascorbic acid and
with the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenyl iodonium significantly
reduces the fusaric acid-induced accumulation of dead cells as well as the increase in caspase-3-like protease
activity. Moreover, oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the
mitochondrial permeability transition pore, respectively, also reduce the rate of fusaric acid-induced cell death. PCD
induced in cell cycle-synchronized tobacco BY-2 cells by application of culture filtrates of Erwinia carotovora
involves changes in vacuole shape and disassembly of endoplasmic actin filaments. In tobacco BY-2 cultures,
deoxynivalenol, a mycotoxin synthesized by Fusarium culmorum and Fusarium graminearum, induces a PCD
sustained by different cross-linked pathways involving ROS generation linked, at least partly, to a mitochondrial
dysfunction and to transcriptional downregulation of the alternative oxidase (Aox1) gene and showing regulation of
ion channel activities participating in cell shrinkage. Interestingly, this mycotoxin is also able to induce PCD in
animal cells, but with different characteristics. This suggests the presence of different ways to induce PCD between
animals and plants (original articles cited in [13]). Some metabolites able to induce PCD in plant cultured cells can
originate from the degradation of cellular components or are produced by the primary and secondary metabolism of
microorganisms and plants. For example, ceramides, lipids derived from the membranes of eukaryotic cells, can
induce PCD in Arabidopsis cultures in a Ca?*-dependent manner. In fact, the calcium channel-blocker lanthanum
chloride substantially reduces the amount of ceramide-induced cell death 141, Interestingly, in the same material,
sphingolipids can reduce apoptotic-like PCD induced by different treatments, ceramides and heat stress included
(391 Moreover, in tomato suspensions, cell death induced by camptothecin, fumonisin B1, and CdSO, is regulated
by phosphatidic acid. This cell death involves ROS and ethylene, depends on caspase-like proteases, and
expresses morphological features of apoptotic-like PCD such as protoplast shrinkage and nucleus condensation
(151 Reactive carbonyl species (namely, acrolein, shown in Table 1) derived from lipid peroxidation can activate
caspase-3-like proteases to initiate PCD in tobacco BY-2 cultures (28l |n the same experimental material,
narciclasine (NCS), a plant growth inhibitor isolated from the secreted mucilage of Narcissus tazetta bulbs, can
induce typical PCD-associated morphological and biochemical changes, namely, cell shrinkage, chromatin
condensation, and nuclear DNA degradation 2. Among primary and secondary metabolites, the triterpene
saponins (namely, medicagenic acid, shown in Table 1) from alfalfa (Medicago sativa) applied to Populus alba cell
cultures induce a PCD dependent on RNS and ROS production and showing changes in nucleus morphology and
chromatin condensation 28!, In tobacco BY-2 cultures, juglone (5-hydroxy-1,4-naphthoquinone) causes cell death
with  ROS overproduction accompanied by formation of apoptic-like nuclear bodies (indication of DNA
fragmentation) and DNA hypomethylation 2. In Vitis labrusca suspension cultures, L-alanine is the only amino

acid able to induce PCD accompanied by DNA fragmentation, expression of defense-related genes, and
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accumulation of phenolic compounds B, Plant phytoregulators can also activate PCD in plant cell cultures. For
example, high levels of cytokinins (namely, 6-benzylaminopurine, shown in Table 1) induce PCD in Arabidopsis
cultures by accelerating a senescence process characterized by DNA laddering and expression of specific
senescence markers. In the same material acetylsalicylic acid, a derivative from the plant hormone salicylic acid
induces typical PCD-linked morphological and biochemical changes, namely, cell shrinkage, nuclear DNA
degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria, and induction of
caspase-like activity. Finally, in Acer pseudoplatanus cultures, chitosan, the non-toxic and inexpensive compound
obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell
walls of many fungi, induces a PCD mediated by ROS and RNS accumulation and showing changes in gene

expression and specific DNA fragmentation [23].

| 3. PCD Induced in Cell Cultures by Abiotic Stress

Several abiotic stresses ranking from different chemicals such as heavy metals and dyes to ambient growth

conditions can induce PCD in plant cell cultures, as summarized in Table 2.

Table 2. Abiotic PCD inducers in plant cell cultures.

Plant Species PCD Induced by Main Characteristics of Induced PCD Reference
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For example, cadmium is a potent inducer of PCD in plants and in tobacco BY-2-cultured cells; this process
involves alterations in cell and nucleus morphology and appearance of autophagic bodies . In the same
experimental material, aluminum oxide nanoparticles induce a PCD form closely connected to loss of mitochondrial
potential, enhancement of caspase-like activity, and DNA fragmentation B2, In Viola tricolor L.-cultured cells, zinc
and lead ions stimulate a PCD form showing DNA fragmentation and activation of caspase-like and papain-like
cysteine proteases [l Interestingly, the indoleamine melatonin protects tobacco BY-2-cultured cells from lead
stress by inhibiting cytochrome c release, thereby preventing the activation of the cascade of processes leading to
cell death 8. Other important environmental pollutants able to induce PCD in cultured plant cells are aromatic
compounds. In fact, fluoranthene causes DNA fragmentation and oxidative stress in tobacco BY-2 suspension

cultures 4. Rose Bengal dye in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts to
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activate a PCD process showing ROS accumulation and specific gene activation B2, and the herbicide dinitro-o-
cresol induces DNA fragmentation, activation of caspase-3-like proteins, and release of cytochrome c¢ from
mitochondria in soybean (Glycine max) suspension cell cultures 8. Other chemicals able to induce PCD are 1-
butanol, which in Populus euphratica cell cultures causes shrinkage of the cytoplasm, DNA fragmentation,
condensed or stretched chromatin, and the activation of caspase-3-like proteases 37 and ATP, which when
externally added to the same cell cultures causes elevation of cytosolic Ca?* levels, ROS accumulation, and
cytochrome c release 28l As far as environmental conditions are concerned, heat stress (HS) is a potent inducer of
PCD in plants, where it causes important yield losses. HS study in cultured cells has permitted to elucidate some
aspects of its induction, thus helping in the reduction of losses. For example, in tobacco BY-2-cultured cells, HS
induces PCD, showing apoptotic features such as cytoplasmic shrinkage, DNA fragmentation, ROS accumulation,
activation of caspase-3-like proteases, and induction of defense-related genes B947 Some of these effects of HS
are prevented by selenium 2 and depend on peroxynitrite accumulation 8, thus sustaining the fundamental role
of oxidative stress in the induction of HS-dependent PCD. This view is also sustained by the analysis of the soluble
proteome of tobacco cells subjected to HS and by custom microarray analysis of gene expression during PCD of
Arabidopsis thaliana-cultured cells. Both these molecular investigations show the induction of genes related to
oxidative stress resistance B9 Another environmental condition that is able to induce PCD is salinity.
Interestingly, the comparison of the responses to salt stress of suspension-cultured cells from the halophyte Cakile
maritima and the glycophyte Arabidopsis thaliana shows that both species present similar dysfunction of
mitochondria and caspase-3-like activation but the salt-tolerant C. maritima can better resist to stress due to a
higher ascorbate pool able to mitigate the oxidative stress generated in response to NaCl 49, O5 exposure also
induces PCD dependent on ROS generation in cell suspensions of Arabidopsis thaliana 21, Light also seems to be
an important environmental factor able to regulate PCD. Darkness enhances cell death but flavonoids and
darkness lower PCD during senescence of Vitis vinifera cell suspensions 42, pointing out the complexity of PCD
regulation in plants. In tobacco BY 2-cultured cells, UV-B overexposure induces a PCD form showing typical
apoptotic morphological features such as cell shrinkage, condensation of chromatin in perinuclear areas, and
formation of micronuclei 43, The nutritional aspect is also important. In fact, simultaneous depletion of sugar and
phosphate is associated with PCD, showing nuclear DNA degradation in suspension cultures of maritime pine
(Pinus pinaster Ait.) 441,

Very interesting results have been obtained from experiments performed in a cell cycle-synchronized Arabidopsis
thaliana cell suspension culture treated with four physiological stressors (polyethylene glycol, mannose, H,O,,
ethylene) in the late G2 phase. In these cultures, depending on the cell death inducer, there are significant
differences in the appearance of specific PCD hallmarks. In fact, polyethylene glycol, mannose, and H,O, cause
DNA fragmentation and cell permeability to vital stains, and produce corpse morphology corresponding to
apoptotic-like PCD. Instead, ethylene (a plant hormone associated with senescence) causes permeability of cells
to vital stains without concomitant nuclear DNA fragmentation and cytoplasmic retraction but with very high ROS
production, leading to severe oxidative stress 431, Similarly, in tobacco BY 2-cultured cells, zinc oxide nanoparticles
cause cell death depending on oxidative stress and lipid peroxidation B, and in grapevine suspension cell

cultures, different concentrations of silver ions cause cell death with different characteristics 2. Thus, depending
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on the genotype/species and level of stress, the same factors may cause different responses. Low stress levels
permit the repair of cell damage, moderate stress levels may induce PCD, and uncontrollable stress levels
potentially lead to accidental cell death (necrosis, see also Section 5). This is particularly evident with abiotic
stressors such as heavy metals and externally added compounds such as plant hormones and H,O, (original
articles cited in 3),
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