Electrospun Medicated Nanofibers for Wound Healing

Subjects: Biochemical Research Methods Contributor: Deng-Guang Yu

The electrospun nanofiber membrane has a unique structure and biological function similar to the extracellular matrix (ECM), and is considered an advanced wound dressing. They have significant potential in encapsulating and delivering active substances that promote wound healing.

wound dressing

electrospinning

nanostructure nanoo

nanocomposite

1. Introduction

Skin is the largest important organ of the human body and the first barrier against external pathogens ^[1]. However, external mechanical forces, surgical operations, burns, chemical injuries, and ulcers from certain chronic diseases can cause varying degrees of damage to the skin ^[2]. Wound healing is a complicated and dynamic process of tissue regeneration, mainly composed of four stages: hemostasis, inflammation, proliferation, and remodeling ^[3]. Although the skin can undergo a certain degree of spontaneous repair, bacterial infection has always been the main reason hindering wound healing. For an infected wound, it will not only disrupt the normal healing process, but also cause the wound tissue to be deformed, causing great pain to the patient ^[4].

Wound dressings play an essential role in wound healing management. They protect the wound from external risk factors, and speed up the healing process ^[5]. On the basis of the mechanism of wound healing, an ideal wound dressing ought to have the accompanying attributes: (1) absorb excess exudate; (2) protect the wound from microbial infection; (3) maintain a moist healing environment at the wound site; (4) facilitate gas exchange; (5) non-toxic, biocompatible, and degradable; (6) does not adhere to the wound, easy to replace and remove; (7) promote angiogenesis and tissue regeneration ^{[6][7][8]}. Different wound needs should be integrated when choosing wound dressings. So far, the common dressings on the market mainly include film ^[9], foam ^[10], sponge ^[11], hydrogel ^[12], and nanofiber membrane ^{[14][15]}. Among these materials, the unique structure of the small pore size and high porosity of the nanofiber membrane can protect the wound from pathogen infection and ensure the free transportation of gas and liquid molecules. At the same time, a large amount of research has been carried out, combining the adjustable characteristics of physical and mechanical properties to make it stand out among biomaterials ^{[16][17]}.

So far, methods such as drawing ^[18], self-assembly ^[19], phase separation ^[20] and template synthesis ^[21] have been used to prepare nanofibers. However, they have disadvantages such as high cost, time-consuming and low efficiency. Therefore, simple and practical electrospinning technology is widely used to manufacture fibers with

diameters in the nanometer or micrometer range ^[22]. Electrospun nanofiber membranes represent a new class of materials. Because of their high surface-to-volume ratio, high microporosity and versatility, they can be used in various biomedical applications ^[23], such as tissue engineering scaffolds ^{[24][25]}, drug delivery ^{[26][27][28]} and wound dressings ^{[29][30]}. Nanofiber wound dressings prepared by electrospinning technology have many advantages. First, the structure and biological function are similar to the natural extracellular matrix (ECM), which provides an ideal microenvironment for cell adhesion, proliferation, migration and differentiation ^{[31][32]}. Secondly, the polymer matrix used for electrospinning can simultaneously combine the biocompatibility of natural polymers and the reliable mechanical strength of synthetic polymers ^[33]. Furthermore, the nanofiber membrane's wide surface area and porous structure can be effectively loaded with various biologically active ingredients, including antibacterial drugs, inorganic nanoparticles, vitamins, growth factors and Chinese herbal extracts. The rate and time of drug release are controlled by adjusting the fiber structure and morphological size, thereby promoting effective healing of the wound site ^[34]. Therefore, electrospun nanofibers show great potential in the preparation of advanced bioactive wound dressings.

2. Wound and Wound Dressing

2.1. Wounds Classification

Wounds are defined as skin deformities or tissue discontinuities brought about by physical or thermal injury, or underlying ailments ^[35]. Given the nature and duration of the healing process, wounds are usually divided into acute and chronic types ^[36]. Acute wounds mainly include mechanical injuries, chemical injuries, surface burns and surgical wounds, etc. The healing process follows the normal wound healing cycle ^[37](^{38]}(^{39]}). However, chronic wounds refer to those cannot go through an orderly healing process and have been open for more than one month. The causes of chronic wounds vary, and are mainly related to certain specific diseases (such as diabetes). They are notorious for the terrible incidence of ulcers, and they are susceptible to infection by inflammatory bacteria that affect wound repair ^[40](^{41]}. Globally, chronic wounds impose a heavy burden on patients and healthcare systems ^[42].

2.2. Types of Wound Dressing

In 1962, Dr. Jorge Winter of the University of London put forward the "moist healing environment theory" first, and related studies confirmed that a moist environment will speed up the wound healing process ^[43]. In recent years, the theory of moist healing has received extensive consideration. The U.S. Food and Drug Administration (FDA) pointed out in an industry guide issued in August 2000 that one of the standard methods of wound treatment is to maintain a moist environment on the wound surface ^[44]. With the in-depth study of wound healing, the types of wound treatment and dressings are constantly improving and developing ^[45]. Wound dressings are classified into traditional wound dressing, modern wound dressing and bioactive wound dressing according to their functional properties and wound origin. **Table 1** classifies and summarizes wound dressings based on their functions.

Table 1. Types of wound dressing.

Nature	Category	Advantages	Disadvantages	Ref.
Traditional wound dressing	Gauze, lint, bandage	Easy to use and economical	 Dry, unable to maintain a moist healing environment Adhering to the wound site is difficult to remove 	[<u>46]</u>
Modern wound dressing	Film	 Transparent, can observe wound changes Form a bacterial barrier Gas and water vapor permeability 	 Absorptive capacity is not strong Obstruct the regeneration of epithelial tissue 	[<u>47]</u>
	Foam	 High water absorption performance to maintain the moist environment of the wound Change the dressing without damage 	1. Weak adhesion 2. Completely opaque	[<u>48]</u>
	Hydrocolloid	 Stimulate tissue autolysis and debridement The closed structure blocks the invasion of external bacteria 	 Poor degradability Produce a special smell 	[<u>49]</u>
	Hydrogel	 Ability to replenish water and maintain a humid environment Comfortable and easy to replace 	 No adhesion, low mechanical strength High water content, limited absorption capacity, not suitable for wounds with high exudate 	[50]

Nature	Category	Advantages	Disadvantages	Ref.
	Alginate	 Non-toxic, fast hemostasis Good air permeability Biodegradation 	Not suitable for dry wounds	[51]
Bioactive wound dressing	Drug-loaded dressing, antibacterial dressing	 Good biocompatibility Anti-inflammatory and antibacterial Promote the growth of cells and tissues 	Induce immune response	[<u>52]</u>

1. Nosrati, H.; Aramideh Khouy, R.; Nosrati, A.; Khodaei, M.; Banitalebi-Dehkordi, M.; Ashrafi-

Dehkordi, K.; Sanami, S.; Alizadeh, Z. Nanocomposite scaffolds for accelerating chronic wound

bealing by enhancing angiogenesis, J. Nanobiotechnology 2021, 19, 1–22. **3. Electrospinning Technology**

2. Fatehi, P.; Abbasi, M. Medicinal plants used in wound dressings made of electrospun nanofibers. Elegtrospinning technology, aned superfine tibes preparition technology, has experienced hundreds of years of development ^[53]. The electrostatic spinning device is mainly composed of four parts: a high-voltage generator, a 3. El Avadi, A.; Jay, J.W.; Prasai, A. Current approaches targeting the wound healing phases to fluid driver, a spinneret and a collection device the line electrospinning process, the initial electrospinning fluid attenuate fibrosis and scarring. Int. J. Mol. Sci. 2020, 21, 1105. gradually changes its morphology after the voltage is applied, until it reaches the critical voltage shape into a Taylor conchanced the identication of the second state of the second stat solvern stradizetiselfthe adins stredroepet for isrequeensied relevers of analibarceerial facely is a hidrer barth deposited on the under the lim or of the month and the electrospinning process can be adjusted by system parameters (polymer type, molecular weight, viscosity, conductivity of the solution, surface tension), 5. Chen, K.; Wang, F., Liu, S.; Wu, X.; Xu, L.; Zhang, D. In situ reduction of silver nanoparticles by process parameters (voltage, flow rate, receiving distance) and environmental parameters (humidity, temperature) sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and to change the morphology and size of nanofibers ⁵²¹⁵⁸. As a simple, top-down one-step preparation method, antimicrobial property. Int. J. Biol. Macromol. 2020, 148, 501–509. electrospinning technology produces nanofibers with small pore size, high porosity and a structure similar to ECM. factation in the second s aphiendiveinegrothedicting. That the 2016 15 69 902 . 348 the same time, the electrospinning technology is eontinungusty duppraded and apptimized. JAyaramuuu in TFigure has cgradually developed into esingle fluid electrospinning, (blend alectrospinning and emulsion alectrospinning) adouble-fluid. Interiorspinning (coaxial electrospinning and side by-side electrospinning) and multifluid electrospinning (triaxial electrospinning and other multifluid electrospinning). 8. Das, A.; Uppaluri, R.; Das, C. Feasibility of poly-vinyl alcohol/starch/glycerol/citric acid composite

films for wound dressing applications. Int. J. Biol. Macromol. 2019, 131, 998–1007.

- 9. Weng, W.; Chi, J.; Yu, Y.; Zhang, C.; Shi, K.; Zhao, Y. Mutifunctional composite inverse opal film with multiactives for wound healing. ACS Appl. Mater. Interfaces 2021, 1, 4567–4573.
- 10. Bužarovska, A.; Dinescu, S.; Lazar, Aa). Bleadban, M.; Pirealabioru, G.G. Costa): Emultion ualandi, C.; Avérous, L. Nanocomposite foams electrospinniegible probased thermoplast electrospinninge and ZnO nanoparticles as potential wound dressing materials. Mater. Sci. Eng. C 2019, 104, 109893.
- 11. Cui, H.; Liu, M., Yu, W.; Cao, Y.; Zhou, H.; Yin, J.; Liu, H.; Que, S.; Wang, J.; Huang, C.; et al. Copper peroxice-loaded Platin sponges for wound dressings with antimicrobial and accelerating healing properties. ACS 75 pl. Mater. Interfaces 2021, 13, 26800–26807.
- 12. Zhao, X., Peir D., Yang, Xu, K.; Yuetectrospinning Zhang, Q.; He, G.; Zhang electrospinning. Green tea derivative driver smart hydrogels with desired functions for chlonic diabetic wound treatment. Adv. Punct. Mater. 2021, 31, 2009442.
- 13. Pan, X.; Kong, D.; Wang, Y.; Liu, W.; Ou-Yang, W.; Zhang, C.; Wang, Q.; Huang, P.; Zhang, C.; Li, Y. Synthetic polymeric antibacterial hydrogel for metheralline resistant staphylococcus aureusinfected wound healing: Nanoantimicrobial self-assembly, drug- and cytokine-free strategy. ACS Nano 2020, 14, 12905–12917.
- 14. Chen, L.; Zhang, L.; Zhang, H.; Sun, X.; Liu, D.; Zhang, D.; Zhang, M.C., Morra, Santos, H.A.; Cui, W. Programmable immune activating electrospun fibers for skin regeneration. Bioact. Mater. **EQULE 6.** BELESSEGOSIFICATION OF electrospinning technology (adapted from ^[62], with permission from MDPI,
- 15. Guo, X.; Liu, Y.; Bera, H.; Zhang, H.; Chen, Y.; Cun, D.; Foderà, V.; Yang, M. α-Lactalbumin-based nanofiber dressings improve burn wound healing and reduce scarring. ACS Appl. Mater.

4. Electrospun Nanofibers in Wound Dressing

16a Torlielle physication of polymer micro-/nanofibers based on microstruction of polymer micro-/nanofibers based on materials are considered to be the ideal choice for wound dressings.

14.1 Shalymenin Electrospun Maund Orassing entel, R.; Choi, T.L. Living light-induced

crystallization-driven self-assembly for rapid preparation of semiconducting nanofibers. J. Am. At present, there are hundreds of polymers that can be successfully used to prepare drug carriers by Chem. Soc. 2018, 140, 6088–6094. electrospinning. In related research on electrospinning wound dressings, both natural and synthetic polymers have 20eeQinviWy Lised; **Fligure Yangnelly**; **CheerifieQ**.abdust-finaltoriesation of porcous-odynitesation. dressingsosed of nanofibers by low temperature thermally induced phase separation, and their adsorption behavior for Cu2+. Carbohydr. Polym. 2017, 178, 338–346.

- 21. Kamin, Z.; Abdulrahim, N.; Misson, M.; Chiam, C.K.; Sarbatly, R.; Krishnaiah, D.; Bono, A. Use of melt blown polypropylene nanofiber template **Polymin Er**mogenous pore channels in glycidyl methacrylate/ethyl dimethacrylate-based monoliths. Chem. Eng. Commun. 2021, 208, 661–672.
- 22. Bazmandeh, A.Z.; Mirzaei, E.; Fadaie, M.; Shirian, S.; Ghasemi, Y. Duai spinneret electrospun nanofibrous/gel structure of chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies. Int. J. Biol. Macromol. 2020, 162, 359–373.
- 23. Sabra, S.; Ragab, D.M.; Agwa, M.M.; Rohani, S. Recent advances in electrospun nanofibers for some biomedical applications. Eur. J. Pharm. Sci. 2020, 144, 105224.
- 24. Abazari, Manimasiri, N.; Nejati, F Kohahadathi, M. ; Haj Sadeghi R Soleimanesourceszaei-Tavirani, Mresources V Acceleration of ostebgenic differentiation by A/graphene oxide nanofibrous scaffold. Polym. Adv. Technol. PCL Polysac Polvsac Nylon-66 Protein charide charide M. Argon and Brgon-oxygen plasma surface 25. rialili. n nanofibers for tissue engineering app<mark>lications. Me</mark>mbranes 2021, 11, 1–13. m**odification of** Chitosan Alginate Gelatin Electrospinning for drug delivery applications: A review. J. Control. 26. 4 by alguon B34 2021 Dextran Collagen PEO ic acid 27. L.; Cheng, G.; Liao, Z.; Huang, H.; Ming, L. Release W., Chen, X.; Zhu,
- charactelistics of an essential oil component level on the second second
- 28. Yu, D.G. Preface-bettering drug delivery knowledge from pharmaceutical techniques and excipients. Curr. Drug Deliv. 2021, 18, 2–3.

29. Schuhladen, K., Ragnu, S.N.V., Liverani, L., Nescakova, 2., Boccaccini, A.R. Production of a

Another important advantage of electrospinning to prepare nanofiber wound dressing by incorporating bioactive glass and Manuka honey. J. Biomed. Mater. Res. Part B 2021, 109, 180–192 of biologically active ingredients to prepare functionalized products. At present, to improve the antibacterial 300. Bertiesed, dkeshinghitanakoo M. Perlya (dive lactisterces glycooliele) tilantics physics physics advantage (AceNeasanOf, titadirung.dinkide (PGO)). Advance gereteroirosputhdialofofiber inorganicy etawoartic desenagifoer combining to prepare functionalized products. At present, to improve the antibacterial 300. Bertiesed, dkeshinghitanakoo M. Perlya (dive lactisterces glycooliele) tilantics physics physics advantage (AceNeasanOf, titadirung.dinkide (PGO)). Advance gereteroirosputhdialofofiber inorganicy etawoartic desenagifoer combines and growth factors [65][66][67][68]

31. Lan, X.; Liu, Y.; Wang, Y.; Tian, F.; Miao, X.; Wang, H.; Tang, Y. Coaxial electrospun PVA/PCL

nanofibers with dual release of tea polyphenols and ϵ -poly(L-lysine) as antioxidant and Augustine et al. Teported the development of a new type of nCeO₂, which contains electrospun poly (3antibacterial wound dressing materials. Int. J. Pharm. 2021, 601, 120525, hydroxybutyrate-co-3-hydroxy Valerate) (PHBV) membrane. In vivo wound healing studies in diabetic rats 320.1600mfdrthat, RHEV; Ressbiases Sainetrinet, Contains violations wound healing studies in diabetic rats proBisiFerbioin Reliabactive antediabetion sviounthered interver figure at the reliable to the preparation of electropy iDeitig. 12019; 16, p492ard 32 nus nanofibers containing CIP and AgNP as the polymer matrix, and studied their effects on wound healing. The antibacterial effect in the process provides a new idea for the preparation of new antibacterial wound dressings. Jafari et al. [71] prepared a bilayer nanofiber scaffold based on PCL and gelatin.

hybrid nanofibers for wound dressings. Acta

focus.

Dermatol

Aelinical

3BrekteshteaverloostalingkamoxNillinMajidi,the Shottouro Jayer Ramaichandreon,toRacceterateMwaluind Bealing. In vitro releated to a seven a s impenceidebeirschriNagematterials 2021 ndl1eitha 2022 to de deposition of collagen and reduced the formation of scars. All results and findings indicate that prefabricated stents can be a promising alternative method for treating 34. Augustine, R.; Rehman, S.R.U.; Ahmed, R.; Zahid, A.A.; Sharifi, M.; Falahati, M.; Hasan, A. skin injuries. Figure 3B shows the characterization analysis of the prepared bilayer nanofiber scaffold. Table 2 Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced summarizes the common polymers and active substances in electrospinning wound dressings. wound healing. Int. J. Biol. Macromol. 2020, 156, 153–170. Harding, K.G., Tate, S.J. Wound management and dressings. In Advanced Textiles fo 35. d Care, 2nd ed.; The Textile Institute Book Series; Woodhead Publishing: Cambridge, UK PHBV/nCeO₂ membrane In vitro and in ovo studies In vivo diabetic wound healing 36. Wang, Wn C.H.; Huang, C.L., Du Z.Z. Nano-drug delivery systems in wound PHBV/nCeO reatment and skin regeneration. J otechnology 2019, 17, 1-1 37. lacob A. ăgan, M.; Ionescu, CM.: Prome, L.; Ficai, A.; Androne CHBV rosput nanofibers based on polysaccharides upascu, D. An overview of biopoly for vound healing management. Pharmaceutic 12, 1–49. Genta. I.; Chiesel E. Proifisations.; Conti, B. Astinxidant arrowing fraces 38. Tottoli. E.M.: Dorati. **PHBV fiber** nd new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020, 12, -30 <u>(B)</u> 39. , Y.; Feng, Q.; Li, Z.; Bai, X.; Wu, Y.; Liu, Y. Evaluating the effect of integra seeded with adipose tissue-deficied stem cells or fibroblasts in wound healing. Curr. Drug Deliv. 2020, 17, Drug release Antibacterial urie, A.; Beele, H.; Beeckman, D. The measureme 40. Smet. S.: Probst. S Malloway. (amoxicillin) Stud. \$2021 onic wounds A systematic review. Int. J. roperties asse t tools Nurs 21. 103998. Zinc oxide 41. Sen, C.K. Human wounds and its burden: An updated compendium of estimates. Adv. Wound Care 2019, 8, 39–48

42. Homaeigohar, S.; Boccaccini, A Biomater. 2020, 107, 25–49.

43. Eaglstein, W.H. Moist wound he 2001, 27, 175–182.

Cell attacono bons, G.W.; Full-thickness Enours Histologica . 44. Driver, V.R.; Gould, L.J.; Dotson, P.;

Eagistein, W.H., Bolton, L.L., Carter, M.J. identification and content validation of wound therap

dressind

clinical endpoints relevant to clinical practice and patient values for FDA approval. Part 1. Surve Figure 3. (A) PHBV/nCeO₂ nanofiber membrane in cell adhesion, migration and wound healing research ^[69]; (B) of the wound care community. Wound Repair Regen. 2017, 25, 454–465.

the electrospun antibacterial bilayer nanofiber scaffold is used to promote the various characterization analysis of the full-thickness skin defect healing in mice $\frac{71}{2}$.

4 Eable 221 The Jaconties and P. p. Alponyener Mhate and Justicopi Bactorouverie dial Content of the second skirling application electrospun PCL/PVA_PEC nanofibrous meshes for antibacterial wound dressing applications. Nanomaterials 2021, 11, 1785.

4	Scaffold Material	Additional Polymer	Bioactive Ingredients	Solvent	Electrospinning Technique	Highlights	Ref.	cotton
4 4 5	Gelatin	CA	Berberine	HFP	Blend	Has strong antibacterial activity and is suitable for the management and treatment of diabetic foot ulcer	[72]	4–28. for S. 1–12. ıs: A
5		CA/PVP	Gentamicin	Acetic acid, ethanol	Bi-layer	Thermal stability, wettability characteristics and antibacterial activity	[73]	1- ral :al iney
5 5	Collagen	EC/PLA	Silver sulfadiazine	Chloroform, ethanol	Blend	The antibacterial performance showed inhibitory activity against Bacillus (9.71 ± 1.15 mm) and <i>E.</i> <i>coli</i> (12.46 ± 1.31 mm), promoted cell proliferation and adhesion	[74]	2021, of nes
5		Zein/PCL	n-ZnO, aloe vera	Chloroform, ethanol	Blend	The developed nanofibers revealed good cell compatibility	[<u>75</u>]	on.

58. Wang, M.; Yu, D.-G.; Li, X.; Williams, G.R. The development and bio-applications of multifluid electrospinning. Mater. Highlights 2020, 1, 1–13.

Additional Polymer	Bioactive Ingredients	Solvent	Electrospinning Technique	Highlights	Ref.	'brid Univ.
PCL	Lidocaine hydrochloride, mupirocin	HFIP, DCM	Dual	Have the functions of promoting hemostasis, antibacterial, and drug release.	[<u>76</u>]	0. orane 2021
PEO/CNC	Acacia extract	Acetic acid	Blend	A continuous release of natural acacia extract from nanofibers occurred during 24 h	[<u>77</u>]	tical , 11, [.] wour
PLGA	Artemisinin	HFIP	Blend	The fabricated membrane shows anti- inflammatory properties without cytotoxicity	[<u>78</u>]	-!019, erial ≥w.
PCL/PVA	Curcumin	Formic acid, dichloromethane	Blend	Accelerate wound healing in diabetic mice	[<u>79</u>]	s. ised urrent
PVA/CS	Dexpanthenol	Acetic acid	Coaxial	Not only is it non- toxic to fibroblasts, but it also has a certain effect on	[<u>80</u>]	ily(3- s. AC
	Additional Polymer PCL PEO/CNC PLGA PLGA PLGA PVA/CS	Additional PolymerDouctive IngredientsPCLLidocaine hydrochloride, mupirocinPEO/CNCAcacia extractPEO/CNCArtemisininPLGAArtemisininPCL/PVACurcuminPVA/CSDexpanthenol	Additional PolymerDocumer IngredientsSolventPCLLidocaine hydrochloride, mupirocinHFIP, DCMPEO/CNCAcacia extractAcetic acidPEO/CNCAcacia extractAcetic acidPLGAArtemisininHFIPPLGACurcuminFormic acid, dichloromethanePVA/CSDexpanthenolAcetic acid	Additional PolymerDocurve IngredientsSolventElectrospinting TechniquePCLLidocaine hydrochloride, mupirocinHFIP, DCMDualPEO/CNCAcacia extractAcetic acidBlendPEO/CNCAcacia extractAcetic acidBlendPLGAArtemisininHFIPBlendPCL/PVACurcuminFormic acid, dichloromethaneBlendPVA/CSDexpanthenolAcetic acidCoaxial	Additional PolymerDotative IngredientsSolventElectospinning TechniqueHighlightsPCLLidocaine hydrochloride, mupirocinHFIP, DCMDualHave the functions of promoting hemostasis, antibacterial, and drug release.PEO/CNCAcacia extract Acacia extractAcetic acidBlendA continuous release of natural acacia extract from nanofibers occurred during 24 hPEO/CNCAcacia extract Acacia extractAcetic acidBlendA continuous release of natural acacia extract from nanofibers occurred during 24 hPLGAArtemisininHFIPBlendAceticated membrane shows anti- inflammatory properties without cytotoxicityPCL/PVACurcuminFormic acid, dichloromethaneBlendAccelerate wound healing in diabetic micePVA/CSDexpanthenolAcetic acidCoaxialNot only is it non- toxic to fibroblasts, but it also has a certain effect on	Additional PolymerDocurve IngredientsSolventLiceus opinining TechniqueHighlightsRef.PCLLidocaine hydrochloride, muprocinHFIP, DCMDualHave the functions of promoting hemostasis, antibacterial, and drug release.Have the functions of promoting hemostasis, antibacterial, and drug release.129PEO/CNCAcacia extract Acacia extractAcetic acidBlendA continuous acacia extract from nanofibers occurred during 24 h121PLGAArtemisininHFIPBlendThe fabricated membrane shows anti- inflammatory properties without cytotoxicity129PLGACurcuminFormic acid, dichloromethaneBlendAccelerate wound healing in diabetic mice129PVA/CSDexpanthenolAcetic acidCoaxialNut only is it non- toxic to fibroblasts, but it also has a certain effect on129

7	Scaffold Material	Additional Polymer	Bioactive Ingredients	Solvent	Electrospinning Technique	Highlights	Ref.	/gelatin 9413.
7						cell attachment and morphology		A.; wound
7	Camac polyvin possibl	PVA	Cardamom extract	Distilled water	Blend	Have good biocompatibility and antibacterial properties	[<u>81</u>]	- pun 1 as
7		EC	CIP, AgNP	Ethanol, acetic acid, acetone	Side-by- side	Janus fiber has good bactericidal activity	[<u>70</u>]	hyl healing.
7 7 7	PVP	PLA/PEO/Collagen	Cefazolin	DCM, DMF, HFIP, ethanol	Coaxial	Antibacterial studies on wounds show that they can effectively inhibit the growth of microorganisms.	[<u>82</u>]	ased on 930. Ilactone mater.
7	PCL	CS	Aloe vera	Acetic acid	Blend	Have good antibacterial properties and biocompatibility	[<u>83</u>]	-2021, 68–78. va DK ⁻¹
8		CS	Curcumin	Ethanol, acetic acid	Blend	Shows antibacterial, anti-oxidant and wound healing capabilities	[<u>84]</u>	sed Idies. ers I. 2020,
8	as an a 112, 14	Gelatin ntibacterial agent 82–1490.	Oregano oil from electrosp	HFIP Dun scatfold bas	Blend sed on sodium	Good biocompatibility alginate. J. Tex	[<u>85</u>] t. Ins	extract t. 2021,

8	Scaffold Material	Additional Polymer	Bioactive Ingredients	Solvent	Electrospinning Technique	Highlights	Ref.	esive crobial
8						and antibacterial activity		ed 53.
8		1	Urtica dioica, n-ZnO	DMF, DCM	Blend	The hybrid scaffold shows high antibacterial activity and cell viability	[<u>86]</u>	ng oaded 63,
8		Gelatin	Clove essential oil	Glacial acetic acid	Blend	Antibacterial activity	[<u>87</u>]	k
8 8	 <u>3</u> PVA	CS/Starch	/	Double-distilled water, acetic acid	Blend	Proper tensile strength and elongation, excellent biocompatibility and antibacterial activity	[<u>88]</u> [<u>92</u>]	propanol, A.R. nide. sential use, and luation Qin et al. r. In vitro
6 S		CS	[<mark>94</mark>] /	Acetic acid	Blend	Good physical and chemical properties, biocompatibility and antibacterial properties	[<u>89</u>]	Pitadan be Nidivis the Juidstivane nanofiber S.F., portable
ç	PEO	CS	Vancomycin	Acetic acid	Blend	Antibacterial effects against S. aureus	[<u>90</u>]	ocal
ç	Long, Y	CS Y.Z. Pertormance o	Teicoplanin of polyvinyl pyr	Acetic acid rolidone-isatis i	Dual root antibacter	Wound closure was significantly ial wound dress	<u>91</u>	ell, S.J.;

produced in situ by handheld electrospinner. Colloids Surf. B 2020, 188, 110766.

g	Scaffold Material	Additional Polymer	Bioactive Ingredients	Solvent	Electrospinning Technique	Highlights	Ref.	In situ Mater.
С						improved		nymol-
Ŭ	baded		S monoranos					Ind
	draggin		us membranes		01, DIEatilapie, a	ill antibactor	a wou	IIIU
	uressing	gapplication. J. Co			92, 310–318.	600		
95	5. Xu, H.;	Xu, X	Yu, D.	-G.;Annie	ligh, S.W. The et	ects of drug l	netero	geneous
	distribut	tions with cote she	ath nanostruct	ares on its si	ustained release	profiles. Bion	nolecu	les
	2021, 1	1, 1330.		ling		\sim		
0.0				4		\rightarrow		
96	. XIaoxia	, K., Jesgendialloùffie	Manclove Yongga	ang, I.; Jingl	e, Z.; Hulai, W. I	Realgar nanoj rospun fabric	particle	es inhibit
	migratic	n, invasion and m	etastasis in a n	louse model	of breast cancer	by suppress	ing ma	trix
	metallo	protection in the protection of the protection o	ngiogenesis. Cu	urr. Drug Del	iv. 2020, 17, 148	–158.		
97	. Eskiler,	G.G.; Cecener, G	, Dikmen, G.; ^s ê	geli, U.; Tur	ica, B. Talazopa	ib Idaded soli	d lipid	
	nanopa	rticles: Preparation	n, Characterizat	ion and eval	uation of the ther	apputic effica	.cy in v	vitro.
	Curr. Di	rug Deliv. 2019-16	511 529.		\sim V V			
98	8. Tan, G.	ZI; Zhou, Y. Lecu	spinningeoleono	phing we tic fibro	ous scattolds for	ne engine	ering:	A
	review.	Int. J. Polym. Mat	r. Połyknak Bilagen	@1@1ine2019, 6	59, 947–960. L	-		
99). Islam, N	IS.; Ang, B.C.; Ar	idriyana, A.; Afil	fi, A.M. A rev	iew on fabricatio	n of nanofibei	rs via	
	electros	pinning and their	applications, SN	Appl. Sci. 2	2019, 1, 1–16.			
		Breathable	Waterproof Antiba	cterial'				
LOC). Yang, X	. Wang, J. Guo,	H. Liu, L., Xu,	N.; Duan, G.	Structural desig	ntoward tune	tional	
	materia	ls by electrospinni	ng Areview E	Polymers 20	020, 30, 682-71,2	S * -		
R	etrieved fr	om https://encodede	dia.ppi/s/entrainies		53 -7 -	-		
			States and			••••		
					•••			
		EPU/	FPU/Thymol nanofiber	🌖 Thymol 🛛 🚞	🚬 Live bacteria 🛛 🥽	Dead bacteria		

Figure 4. (**A**) In situ electrospinning process ^[93]; (**B**) ^[94] (**a**) schematic diagram of portable electrospinning device and preparation of EPU/FPU/thymol nanofiber; (**b**) schematic diagram of the breathable, waterproof and antibacterial functions of EPU/FPU/Thymol nanofiber.

4.4. Application of Electrospinning Technology in Other Fields

In recent years, the advantages of electrospinning have attracted more and more attention. With the continuous research of related scholars, the application of electrospinning nanofibers has become more and more extensive. In addition to playing a role in the field of biomedicine (drug delivery ^{[95][96][97]}, tissue engineering ^[98] and wound dressings), it also plays a pivotal position in environmental protection (air filtration, water treatment), energy and chemical industries (light-emitting device, solar cell and supercapacitor) and other fields ^{[99][100]}. Fiber materials

with unique structures and characteristics arranged by electrospinning have been generally utilized in different fields (**Figure 5**). Combining the structural advantages of the materials with the properties of the materials will be the focus of future research.

Figure 5. Structure, performance and application of electrospun nanofiber.