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Microgrids usually employ distributed energy resources such as wind turbines, solar photovoltaic modules, etc. When

multiple distributed generation resources with different features are used in microgrids, managing these resources

becomes an important problem. The generated power of solar photovoltaic modules and wind turbines used in microgrids

is constantly changing with solar irradiation and wind speed. Due to this impermanent and uncertain nature of renewable

energy resources, generally, energy storage systems are employed in microgrid systems. To control the distributed energy

resources and energy storage units and sustain the supply and demand balance within the microgrid and provide

sustainable and reliable energy to the loads, energy management systems are used. Many methods are used to realize

and optimize energy management in microgrids. 
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1. Introduction

One of the most efficient ways to produce energy is through fossil fuels, which include coal, oil, and natural gas. Recent

scientific research demonstrates that these energy sources have detrimental effects on human health and the

environment in addition to their economic effects . Along with these effects, because of different reasons such as

increasing energy demand, increasing energy prices, energy source dependency, etc., scientists are investigating

alternate energy resources. Renewable energy resources and distributed generation have historically been used to try to

meet the needs of reducing the negative effects of electrical energy production on the environment, meeting the ever-

increasing demand for electrical energy, and improving the quality, reliability, and stability of power systems .

Increasing the capacity of electrical networks and extending transmission lines to feed farther-off electrical loads raise the

costs of producing electrical energy as well as transmission–distribution losses due to the growing electricity demand .

Distributed generation which mostly employs renewable resources like solar and wind power is a good opportunity to

solve these problems. Microgrids, which are small-size power grids, are also proposed for the same purpose. A microgrid

can employ conventional and renewable distributed energy resources. Microgrids can supply energy to local-regional

loads or the main power grid with these resources. Therefore, nearby loads can receive electrical energy from energy

sources that are dispersed throughout a given area. They can also run in island mode (off-grid) or grid-connected (on-grid)

mode. From these angles, microgrids provide many advantages for the future of power grids . Microgrids containing

renewable energy sources are used to reduce the annual electricity bill, energy purchased from the grid, and greenhouse

gas emissions in the conventional power system. Microgrids can be used to increase the sustainability of electricity supply

and minimize poverty in developing countries .

The large inertia moments of large power generators are crucial in suppressing oscillations in voltage and frequency that

occur in traditional power systems. Compared to conventional generators, distributed generation units in microgrids are

more unstable due to system oscillations in voltage and frequency because they are connected to the grid through power

electronic converters . To guarantee that microgrids run consistently, effectively, and in compliance with standards, a

control system must be developed. Numerous problems, including voltage-frequency regulation, proper load sharing,

synchronization with the main grid, control of the power flow between the microgrid and the main grid, and operating cost

optimization, should be solved by this control system . For the distributed energy resources that microgrids use as

power sources to cooperate effectively, energy management is crucial.

Efficient, safe, and intelligent use of distributed energy resources among microgrid components is important for power

quality and supply–demand balance in the system. This can be achieved by using energy management systems in

microgrids. Numerous approaches, including multi-agent systems, model predictive control, artificial intelligence

techniques, meta-heuristic-based methods, stochastic and robust programming-based methods, and classical method-

based approaches, are used in microgrid energy management systems .
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A new class of electricity sources that provides balanced electrical energy generated by clean and environmentally

friendly energy resources is microgrid power systems. Microgrids are also called multiple energy source systems or hybrid

renewable energy systems. Two of the cleanest methods of generating electrical energy are solar photovoltaic (PV)

systems and wind turbines, which are both widely used globally. Hybridization of various energy sources aims to produce

stable and sustainable electricity by providing maximum electricity generation capacity at the lowest possible cost for

areas served by conventional electricity grids. Nevertheless, energy storage devices are required to guarantee energy

sustainability because renewable energy resources are sporadic and dependent on weather . To regulate the power

flow between sources, loads, energy storage systems, and the main power grid with various characteristics within the

microgrid, an energy management strategy, as illustrated in Figure 1, is necessary.

Figure 1. Energy management in microgrid units.

Microgrids combine energy storage systems, renewable energy sources, and the grid and can operate in island mode or

grid-connected mode. Microgrids must have efficient energy management in place to guarantee maximum energy

efficiency. However, integrating renewable energy resources is made more difficult by the stochastic nature of wind and

solar energy . Thus, among the difficulties in energy management and microgrid optimization are arranging

unpredictable operating conditions of distributed generation and guaranteeing economical and adaptable operation with a

variety of resources. The microgrid’s energy management system carries out several tasks, including tracking, evaluating,

and projecting power generation based on the features of distributed generation systems, load consumption, energy

market prices, and meteorological conditions. Energy management systems can optimize the microgrid with the help of

these features.

In the microgrid, if the power demand in the system is less than the power produced by resources, the excess power is

stored in energy storage devices. If the demanded power is more than the produced power, the required power is met

from energy storage devices, and in case of a connection to the grid, it will be drawn from the grid or transferred to the

grid. To perform tasks such as determining the amount of power to be transferred, an effective energy management

system must be established between the production, consumption, and storage systems. Thus, controllers can work in

coordination with the demand from the load to achieve appropriate energy management .

For energy-efficient operation, energy management systems are crucial in the utility, industrial, commercial, and

residential sectors. Energy management systems aim to minimize greenhouse gas emissions, optimize distributed energy

resource planning, and reduce energy consumption. Monitoring and data analysis are made easier for energy

management systems by their integration with a human-to-machine interface (HMI) and supervisory, control, and data

acquisition (SCADA) system. It includes the weather forecast, load demand, power output from generation resources, and

the current price of energy. The energy management systems make use of this data to maximize system performance at

the distribution, transmission, and generating ends. Most microgrid energy management systems examined in the
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literature have centralized supervisory control architecture. However, because distributed energy resources are becoming

more and more integrated into the power system, the centralized architecture is confronted with challenges related to high

computational time, limited system scalability, and high instability in the event of failures. For this reason, a decentralized

supervisory control architecture has gained more attention from researchers recently. The requirement for a constant two-

way communication link between microgrid components and their synchronization, however, raises the cost of the system.

Furthermore, it is necessary to optimize the cost of these communication systems’ upgrades .

Energy management in microgrids is very important in real-world applications in utilities, industrial, commercial, and

residential sectors for efficient energy operation. By using these energy management systems in daily life, they aim to

optimize distributed generation resource planning, reduce energy consumption, and minimize greenhouse gas emissions.

These systems aim to operate the microgrid at maximum efficiency by monitoring the power output of generation

resources, weather forecasts, load demand, and real-time energy prices. The cost of deployment and data rate are the

main factors influencing the choice of communication technologies for microgrids in remote, residential, and rural areas.

WiFi, Bluetooth, Z-wave, and Zigbee are used as communication technologies in such microgrids. Passive optical

networks, 3G, and 4G technologies are also used in microgrids used in public services. These communication

technologies are used by routers at distributed energy resource and load ends to communicate with the local controller

and microgrid central controller. Arduinos and Rasberry PI are two examples of inexpensive embedded systems that can

be used to implement local controllers. These technologies are designed to collect information from smart meters and

monitoring sensors and carry out local control operations to protect consumer privacy. Data from SCADA, HMI, and local

controllers are used by the microgrid central controller to drive energy management operations. The primary criteria used

to choose the best solution approaches for these energy management operations are computational time complexity and

convergence to the optimal solution based on merits .

The constant change of wind speed and solar irradiation values in renewable energy sources used in microgrids

negatively affects system security and increases energy costs. The stochastic behavior of renewable energies, especially

wind and solar, increases the need to find the optimum operation of the microgrid. The optimal operation of a typical

microgrid aims to simultaneously minimize operating costs and accompanying emission pollutants over the daily planning

horizon. By managing these energy resources in microgrids, it is aimed to increase the reliability and stability of the

system while maintaining the balance between supply and demand .

2. Energy Management Systems in Microgrids

A new energy structure called a microgrid combines energy storage systems, renewable and other energy resources,

loads, and the power grid. Microgrids must have efficient energy management in place to guarantee maximum energy

efficiency. However, integrating renewable energy resources has made it more difficult because of the stochastic nature of

these resources. Thus, ensuring economical and flexible operation with a range of resources and arranging unpredictable

operating conditions of distributed generation are among the challenges in energy management and microgrid

optimization. An energy management system is essential for making the best use of these distributed energy resources in

a microgrid in a way that is coordinated, safe, smart, and dependable. A microgrid’s energy management system can

monitor, analyze, and forecast power generation from distributed generation systems, load consumption, energy market

prices, and meteorological factors, among other things. Energy management systems can optimize the microgrid with the

help of these features .

In a microgrid, energy management systems are control software that allocates power output among distributed

generation units and finds the most cost-effective way to feed the load. This is done by taking into account safety,

reliability, and power quality. In general, a microgrid energy management system needs to coordinate various distributed

generation sources, each with its constraints, to provide energy in a sustainable, reliable, environmentally friendly, and

cost-effective manner. Energy management systems receive multiple inputs and then act on the available information to

achieve the goals set by the microgrid owner. Figure 2 provides an illustrative overview of a microgrid energy

management system.
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Figure 2. A diagrammatic summary of a microgrid energy management system.

Energy management is facilitated using energy storage systems in microgrids. Energy management enables the

realization of scenarios such as storing excess power in energy storage devices if the power demanded by the system is

less than the power produced by renewable energy resources, and meeting the required power from energy storage

devices if the power demanded exceeds the power produced by renewable energy resources. Between the production,

consumption, and storage system and the control of battery charging and discharge, an effective energy management

system is needed. Controllers can thus collaborate with the load’s demand to achieve appropriate energy management.

Different approaches applied to energy management systems in microgrids are shown in Figure 3. Classical method-

based energy management systems, energy management systems based on meta-heuristic approaches, energy

management systems based on artificial intelligence methods, energy management systems based on stochastic

(variable) and powerful programming approaches, energy management systems based on model predictive control, and

multi-agent energy management systems are used in energy management system applications in microgrids .

Figure 3. Different approaches are applied to energy management systems in a microgrid.

2.1. Classical Method-Based Energy Management Systems

The classical methods used in microgrid energy management are based on linear and non-linear programming

techniques. Microgrid energy management systems employ centralized controller control architecture and linear or non-

linear programming techniques, with an emphasis on microgrid energy resource optimization .

The rule-based and dynamic programming-based microgrid energy management techniques are among the classical

methods. These techniques mostly concentrate on trading energy with the main grid and optimizing energy resources.

Models of energy management based on a central rule are being developed for the microgrid operating in both the

islanded and grid-connected modes. In terms of the microgrid system’s voltage and frequency stability, a seamless

transition between these two modes is guaranteed .

In research on microgrid control, where a controller manages voltage and frequency, dynamic modeling is necessary to

evaluate how control algorithms affect the performance of individual microgrid components. Additionally, a dynamic model

is useful in demonstrating regulatory compliance with specific standards, such as Institute of Electrical and Electronics

Engineer (IEEE) Standard 1547or local grid code. Software packages are typically used in dynamic modeling to either

select pre-made component models or generate unique models from a diverse range of software packages.

2.2. Meta-Heuristic Approach-Based Energy Management Systems

To solve difficult nondifferentiable optimization problems, heuristics and meta-heuristics are applied in a variety of

engineering domains, including communications, power systems, microgrid energy management systems, transportation,

and power systems. Genetic algorithms and particle swarm optimization (PSO) techniques are two common metaheuristic
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approaches used in the development of microgrid energy management systems due to their parallel computing

capabilities. Apart from the widely recognized PSO and genetic algorithm approaches for energy management systems,

there exist novel approaches like Gray Wolf Optimization (GWO). Energy management in microgrids makes use of

techniques like Ant Colony Optimization (ACO) , Bacterial Foraging Optimization (BFO) , Artificial Immune System

(AIS) , Particle Swarm Optimization (PSO) , Genetic Algorithm (GA) , Artificial Bee Colony (ABC) , and Gray

Wolf Optimization .

Various algorithms, such as GA and PSO, must be evaluated for computational complexity, scalability, and accuracy in

real-world microgrid scenarios. As a result of this evaluation, problems are modeled with various dimensions in real-world

optimization scenarios. The purpose of this is to estimate the scalability and adaptability of the proposed algorithm to

unexpected changes.

2.3. Stochastic and Powerful Programming Approaches-Based Energy Management Systems

Energy management systems based on stochastic (variable) and powerful programming approaches use estimated

values of electricity price, solar irradiation, wind speed, and load power. As a result, the overall operating cost, including

the cost of energy trading with the grid and the operating cost, is minimized. This energy management approach is

considered to deal with uncertainty by estimating variable parameters in the system through programming techniques. A

controller is also used in the system to reduce fluctuations in the bus voltage and control the battery current. Stochastic

programming models are being developed to optimize microgrid energy management that takes into account uncertainties

such as wind speed, solar irradiation, and load demand in renewable energy resources .

Optimal operation of the microgrid and optimization of investment costs can also be achieved through energy

management and variable programming methods. Scenario creation methods are used for microgrid scenarios and the

probabilities of these scenarios occurring, and problems caused by disruptions or malfunctions in the main grid or

microgrid. The goal is to reduce the anticipated running costs as much as possible. These costs include load shedding

and the running costs of renewable energy resources like solar, wind, and battery systems.

2.4. Model Predictive Control-Based Energy Management Systems

Model predictive control-based energy management systems aim to predict the microgrid’s controllable load to implement

an effective energy management strategy. The system performs better in terms of fewer power outages, a lower maximum

demand, and an improved load factor because of its predictive control capability . Energy trading with the main grid,

optimizing the use of renewable energy resources, battery and electrical vehicle management, and other measures to

guarantee system stability and profitability are all part of the microgrid’s economic operation.

Optimal control schemes in the microgrid are learned from data, making them stand out as model-independent or data-

driven calculations. By using learning-based techniques, and having an open system model, it is possible to reduce

resistance, increase the scalability of the energy management system, and reduce costs. To release accurate models and

permissions for a microgrid, model-based energy management systems depend on domain expertise. This means that

while this method produces high improvement rates, it is neither scalable nor transferable. However, improvements in

microgrids might force a redesign that results in noticeably higher maintenance costs .

2.5. Artificial Intelligence Methods-Based Energy Management Systems

In the microgrid, situations that affect power quality such as controller gains, frequency deviation, sudden drops in current,

and voltage deviation occur. The difficulty in adjusting many parameters in these complex systems can be overcome with

artificial intelligence techniques such as fuzzy logic, artificial neural networks, machine learning, deep learning, and game

theory . The fundamental thing about fuzzy logic is that, unlike classical logic systems, it aims to model uncertain

modes of reasoning that play a notable role in people’s rational decision-making in an environment of uncertainty and

ambiguity. This ability refers to performing energy management with the ability to derive an approximate answer to a

question that is uncertain, incomplete, or not completely reliable .

To accurately ensure the reliability of artificial intelligence systems used in energy management systems in microgrids,

real-world scenarios and real failure modes need to be studied. The quality and variability of data used in artificial

intelligence methods directly affect the performance and reliability of energy management systems. As a result, gathering

data is necessary to demonstrate the dependability of artificial intelligence, and statistics are crucial in guiding the

selection of relevant data. Following the acquisition of artificial intelligence reliability data, reliability predictions, statistical

modeling, and analysis offer an overview of anticipated reliability in upcoming scenarios. Additionally, reliability tests and
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demonstrations can be used to pinpoint the root causes of reliability problems, allowing artificial intelligence system

designers to make improvements that will increase reliability. Although it can be difficult, identifying the reasons behind

artificial intelligence reliability failures offers opportunities for statistical reliability research.

2.6. Multi-Agent System-Based Energy Management Systems

Multi-agent systems are comprised of agents that collaborate to solve problems that an individual agent finds difficult or

ineffective to solve on its own. These agents use their skills and knowledge to work together in a coordinated manner to

solve these problems. Multi-agent systems consisting of many agents are applied to microgrids as an energy

management strategy . The agent is the fundamental component of an agent-based energy management system. It

can be a real or virtual entity. Virtual agents are software algorithms that coordinate system components, whereas

physical agents in applications are micro-resources and controllable loads. An agent possesses the capacity to act within

the system and alter it through its actions. Depending on how big it is, a microgrid may have a lot of agents.

Multi-agent systems can be understood as an assembly of intelligent and self-governing entities, referred to as agents,

which essentially develop within a perceivable and manipulable environment. Other than the agent itself, this environment

can be regarded as anything. Depending on how they are set up, these agents can be somewhat autonomous due to their

intelligence. Multi-agent systems in energy management applications are made up of different agents interacting in a

particular setting. Agents can perceive changes in their surroundings and use reasoning to determine the best course of

action. In the field of Electrical and Electronics Engineering, multi-agent systems find application in diverse problem areas,

including but not limited to diagnostics, distributed control, modeling and simulation, protection, and maintenance planning

.

Compared to traditional analytical control techniques, multi-agent systems offer many benefits . In today’s grid, the

classical control techniques used in SCADA systems are not entirely functional . Nonetheless, the control system

needs to function well as a large-scale and flawed system in a smart grid with thousands of controllable devices. In multi-

agent systems, agents see the world locally and possess a restricted amount of knowledge. Although agents only need to

know about their immediate neighbors, more agents need to communicate with each other to work more functionally and

cooperate with other agents . In this way, more advantages are provided by choosing multi-agent systems for microgrid

energy management. However, if the amount and costs of data to be transmitted in the system are desired, the

communication of agents can be limited to the microgrid they belong to and their neighboring agents.

3. Energy Management Systems Applications in Microgrids

Microgrids contribute to low carbon emissions by increasing the diversity in energy production as well as the efficiency in

energy consumption. In these systems, important issues such as energy management, adjustment of energy supply

according to demand, efficient use of energy, and protection of power quality are addressed. Therefore, effective energy

management in microgrids is extremely important for the reliability, sustainability, and economy of the system.

Energy management goals and practices in a microgrid depend on the user’s preferences. Targets are influenced by

factors such as geographic location, installed equipment, types of loads to be supplied, grid energy tariff structures,

government regulations, and energy storage and generation options on the microgrid. Due to the modular and highly

customizable nature of a microgrid, each microgrid has a unique set of goals. In general, the main purpose of a microgrid

is to reduce operating costs by maximizing the savings of a microgrid through renewable energy and minimizing

generation costs. As presented in Figure 4, microgrid energy management applications are carried out with targets such

as environment, capital and operating costs, and energy storage costs.
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Figure 4. Microgrid energy management objectives.

Ref.  designed a centralized control system for energy management in an interconnected microgrid based on the

concept of flexibility for the end users. It was possible to attain an ideal economic dispatch by employing quadratic

programming. This grid was integrated with a photovoltaic system. A modified IEEE 33-node grid was used to test the

algorithm.

A mixed-mode microgrid energy management system with power sharing, continuous run, and on/off base was proposed

by . The power-sharing mode allows for power trading with the main grid, but the fuel cell must always operate in

continuous run mode. Both modes are solved using linear programming, an optimization technique. In contrast, a mixed-

integer linear programming solution approach is used to solve the on/off mode, maximizing the microgrid’s performance

concerning the fuel cell, energy storage system, and the on/off connection status of the main grid. The microgrid’s

operational requirements are taken into consideration when determining the size of the energy storage system.

By using a solar desalination system, an energy management system for a hybrid AC/DC microgrid in a remote

community was investigated . The proposed optimization algorithm uses mixed-integer non-linear programming as the

foundation for its goal function, which minimizes daily operating costs.

A proposal for a mixed-integer nonlinear energy management model of an isolated three-phase unbalanced microgrid can

be found in . The designed system reduces fuel consumption, system costs, and reactive power penalty costs. Energy

storage systems, transmission lines, and transformer mathematical models were developed. Two successive stages of a

mixed-integer nonlinear-based unit commitment model and optimal power flow model form the developed model.

Ref.  studied how to parametrize the uncertainty of solar and wind energy generation in a microgrid using mixed-integer

linear programming to manage energy in the microgrid. Two levels of optimization are accomplished. The selection of the

parametrization scheme comes first, followed by operational decisions that take market price variation and storage system

disposition into account.

A multi-timescale-based energy management system was presented by . Two factors are taken into account in the

optimization problem: dynamic compensation in real time and daily static programming. The optimal load flows in a mixed-

integer quadratic programming method are used to solve this, and data on solar irradiation and wind speed and direction

are used to forecast the batteries’ load state.

Ref.  studied distributed energy management for networked microgrids embedded in modern distribution systems using

mixed-integer linear programming. An alternating direction method of the multiplier-based distributed framework was

developed for the scheduling of networked microgrids embedded in contemporary distribution systems by iteratively

adjusting nodal price signals, taking into account the diverse ownership of microgrids, distributed energy resources that

interface directly with utilities, and responsive loads. A contemporary distribution system made up of numerous networked

microgrids, dispersed energy resources that communicate directly with utilities, and responsive loads is used to validate

the suggested approach using numerical simulation results.

A summary of classical method-based energy management systems applications in microgrids is given in Table 1.

Table 1. Classical method-based energy management systems applications.
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Ref. Proposed Method Energy Management Application

Quadratic
programming Quadratic programming was used to achieve the best possible economic distribution.

Linear programming
The problem is resolved by applying a mixed-integer linear programming solution technique,

which optimizes the microgrid’s performance concerning the fuel cell’s on/off connection,
energy storage system, and main grid conditions.

Non-linear
programming

Mixed-integer nonlinear programming forms the basis of the objective function of the
suggested optimization algorithm, which minimizes daily operating costs.

Mixed-integer
nonlinear

programming

Designed with mixed-integer non-linear base unit commitment and optimal power flow
models, the system reduces fuel consumption, system expenses, and reactive power penalty

costs.

Mixed-integer linear
programming

Optimizes the system with operational decisions that take into account market price variation
and storage system layout.

Mixed-integer
quadratic

programming

Optimum load flow was achieved by considering real-time dynamic balancing and daily static
scheduling.

Mixed-integer linear
programming

It is aimed at distributed energy management for modern distribution systems embedded in
networked microgrids. By iteratively adjusting the node price signals, the alternative direction

method of the multiplier-based distributed framework is developed.

In Ref. , a two-layer energy management system was showcased for distant microgrids. An innovative scheduling

algorithm that takes battery lifetime into account was put forth, and it should lower microgrid operating costs. The

technique was based on goal programming, which gives varying weights to the cost of using batteries and fuel. Findings

indicated that extending the battery life could lower the microgrid’s overall operating costs despite an increase in fuel

consumption. Over relatively large variations in battery costs for this case study, a wide range of weights proved effective

in lowering the operational cost. Despite the analysis being restricted to lead-acid batteries, the technique is sufficiently

universal to be applied to other kinds of batteries.

To minimize the expenses associated with managing distributed energy resources,  proposed the use of memory-

based genetic algorithms to optimize power management in grid-connected microgrids. The proposed method

outperforms genetic algorithms and particle swarm optimization with a constriction factor and an inertia factor.

A study on microgrid optimization using the particle swarm algorithm, which can run an isolated or connected microgrid,

was presented by . The suggested method takes into account the variations in the microgrid’s load demands and

renewable resource supply, and it provides suitable advance (24 h) forecasts to mitigate these variations.

Ref.  suggested a system subject to demand, wind energy, electric vehicle costs, and electricity prices. In the

optimization procedure of this investigation, the gray wolf algorithm is employed. The microgrid system’s timing and

operation are optimized utilizing this enhanced algorithm. Reduced general operating costs are a result of the system.

Efficient management of the grid’s integration of energy storage technologies, demand response programs, renewable

energy sources, and other emerging technologies results in this cost reduction.

Ref.  presented an adaptive modified particle swarm algorithm approach based on the hybridization of chaotic particle

swarm algorithm and fuzzy self-adaptive particle swarm algorithm to optimize the multi-objective energy management

system model of a grid-connected microgrid. The objective is to lower the operating costs and emissions of microgrids.

The developed algorithm outperforms fuzzy self-adaptive and chaotic particle swarm algorithms.

A novel approach to optimizing an interconnected microgrid was introduced by . It combines a fuzzy logic expert

system with a meta-heuristic grey wolf optimization. With this approach, the costs of the power plants as well as the

emissions from fossil fuel sources are kept to a minimum. By taking into account the batteries’ optimal capacity and

minimizing the use of fossil fuels, this strategy lowers microgrid costs.

In a stand-alone microgrid, ref.  introduced a genetic algorithm-based technique for determining the best location for

renewable energy generation and batteries. The suggested multi-objectives include energy disposal and a decrease in life

cycle and operational expenses. To optimize the microgrid, the optimization takes into account variations in wind and solar

irradiation and extracts data from a load profile.

A summary of meta-heuristic approach-based energy management systems applications in microgrids is given in Table 2.
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Table 2. Meta-heuristic approach-based energy management systems applications.

Ref. Proposed Method Energy Management Application

Genetic algorithms Genetic algorithms were used to provide energy supply options through the use of
diesel generators and demonstrated reduced operating costs of the microgrid.

Genetic algorithms Power management is implemented to reduce the operating costs of distributed energy
resources.

Particle swarm algorithm It takes into account changes in the microgrid’s load demands and renewable resource
supply and provides appropriate advance (24 h) forecasts to mitigate these changes.

Grey wolf optimization The algorithm is used to optimize the timing and operation of the microgrid system.
Thanks to the system, general operating costs are reduced.

Fuzzy self-adaptive particle
swarm algorithm

The algorithm, developed to reduce microgrid operating costs, realizes the multi-
purpose energy management system of a grid-connected microgrid.

Grey wolf optimization With a new approach to optimizing an interconnected microgrid, both the costs of the
power plants and emissions from fossil fuel sources were kept to a minimum.

Genetic algorithms It takes into account changes in wind and radiation sources and extracts data from a
load profile to optimize the microgrid to save energy and reduce operating expenses.

An energy management model for a microgrid that takes into account supply and demand uncertainty is presented .

The study also takes into account uncertainties in solar and wind energy production and energy demand. The Nuclear

Energy Research Center in Taiwan tested it on a real grid with stochastic programming. In the first stage, battery capacity

was optimized. In the second, an ideal microgrid operating strategy was evaluated.

A multi-objective stochastic technique was employed by the author to present a hybrid microgrid optimization system in

. The objective function of this study was applied at various microgrid stages to minimize system losses and lower the

operating costs of renewable resources. The feeding systems’ overall operating costs and losses were weighted and used

to formulate the problem. Mixed-integer linear programming was utilized to solve the problem, and the IEEE 37 node

distribution system was used to test the proposed approach.

A hybrid grid-connected community microgrid architecture is also advised for agricultural purposes . To reduce the cost

of the irrigation system, pumped storage unit, and energy trading costs with the main grid, the author suggested a

stochastic coordination framework. The wholesale electricity price and the uncertainties associated with wind power are

modeled using the point estimated method.

An optimization technique for a two-stage interconnected grid was presented by . The first stage uses a conventional

generator, and the second stage uses hourly marketing to ensure that the conventional and distributed generation is

dispatched economically. This combination enables the Lyapunov optimization method to be used to manage uncertainty

in renewable generation.

In Ref. , a novel approach to energy management for a thermal and electrical multi-energy microgrid is proposed.

Industrial, commercial, and residential agencies optimize their energy trading strategies at the bottom level, while energy

planning and pricing strategies are optimized at the top level. For computational tractability, an analogous single-level

mixed integer linear program reformulation is then derived. The day-ahead and intraday energy market strategies are

coordinated using an adaptive stochastic optimization approach.

A summary of stochastic and powerful programming-based energy management systems applications in microgrids is

given in Table 3.

Table 3. Stochastic and powerful programming-based energy management systems applications.

Ref. Proposed Method Energy Management Application

Stochastic
programming

Considering the uncertainties in solar and wind energy production and energy demand, an
energy management model for a microgrid that takes into account supply and demand

uncertainty is presented.

Multi-objective
stochastic

The objective function applied at various stages of the microgrid reduces the operating costs
of renewable resources by minimizing system losses.
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Ref. Proposed Method Energy Management Application

Stochastic
coordination
framework

An application was developed to reduce the system cost, pumped storage unit, and energy
trading costs with the main grid, and wholesale electricity price and wind energy uncertainties

were modeled using the estimation method.

Lyapunov
optimization method

Using hourly marketing techniques, it was possible to dispatch conventional and distributed
generation economically while also managing the uncertainty associated with renewable

generation.

Stochastic
optimization

In a multi-energy microgrid, the strategies developed in the day-ahead and intraday energy
markets are coordinated using an adaptive stochastic optimization approach.

A model predictive control approach was introduced by  to manage a mixed-generation microgrid that combines

distributed and renewable sources. The goal of the model is to lower the expenses and limitations associated with energy

demand and generation.

Ref.  introduced an energy management system based on a control algorithm to manage distributed generation,

energy storage systems, and microgrids made up of supply grids and various loads. TCP/IP-based control and

communication was introduced as a solution to the transition problem between solar system generation and storage

systems.

In Ref. , an application to operate a hybrid system with solar energy and battery storage was presented. Batteries were

used to store grid power during off-peak hours and provide power to customers during peak demand hours.

Ref.  used model predictive control to maximize the daily performance of the diesel–wind–PV hybrid system. A method

was defined that combines the system with forecast data on temperature, wind speed, solar irradiance, and daily load.

Microgrids are now a viable option for integrating distributed generation to provide remote communities with energy, so it

is critical to control and manage them well. The three control levels of a DC microgrid operating in isolated mode are

designed and simulated in . A model predictive control-based energy management system with real-time measurement

feedback is also suggested. This system ensures power flow distribution and optimal energy dispatch at the lowest

possible cost while prolonging the life of the energy storage system. Disturbances generated in the lower control levels

can be responded to by the energy management system. The effectiveness of the microgrid is examined and contrasted

under two conditions: one in which it has no energy management system and the other in which it has one in response to

variations in irradiation and electricity demand. Analyzing the power and operating costs provided by each production unit

allows to evaluate whether the battery’s state of charge and power balance are maintained.

A summary of model predictive control-based energy management systems applications in microgrids is given in Table 4.

Table 4. Model predictive control-based energy management systems applications.

Ref. Proposed Method Energy Management Application

Model predictive
energy management

By managing the microgrid, it is aimed at reducing expenses and limitations related to energy
demand and production.

TCP/IP-based control
and communication

It provides communication between photovoltaic system generation and storage systems to
solve the energy management problem.

Model-based energy
management

In a hybrid system, an energy management system that provides supply/demand balance was
implemented with an energy storage system.

Model-based energy
management The application was developed to maximize the daily performance of distributed generation.

Model predictive
energy management

This system ensures power flow distribution and optimum energy distribution at the lowest
possible cost while extending the life of the energy storage system. Analyzing the power
provided by each production unit, the operating cost and the charge state of the battery

allows the evaluation of the fulfillment of the power balance.

A two-stage AI-based energy management in an isolated microgrid is proposed in  to find the optimal day-ahead

distribution. With the efficient management of microgrid power sources, including diesel generators, battery energy

storage systems, and intermittent renewable energy resources, the deployment aims to minimize expected operating

costs, reactive power costs, spinning reserve, and load-shedding. To model the uncertainties in the output power of
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renewable energy resources to be used in the formulation of stochastic programming, generative adversarial networks

were utilized to generate scenarios based on data.

Ref.  used models with two different recurrent neural network architectures (RNN), long short-term memory (LSTM)

and gated recurrent unit (GRU) to predict wind speed and solar irradiance at a designated location for the establishment

of microgrids. The models improved the prediction accuracy of the models. While data on extreme weather events such

as wind were taken into account to increase the data, it was trained using meteorological data obtained from

meteorological stations and energy management was carried out in the system.

Fuzzy logic controllers are used to streamline system control, especially in microgrids that have several different operating

modes and components. Because fuzzy logic controllers do not require complex mathematical modeling or rely on the

nonlinearity of the microgrid’s parts, the system specifically favors them. This leads to the creation of an all-encompassing

energy management system based on simple linguistic concepts. Ref.  describes a fuzzy logic control-based energy

management technique for electric cars and hybrid energy storage systems that use fuel cells, batteries, and

supercapacitors. This study was carried out on a test microgrid. For optimal control of the energy storage system in a

residential microgrid, Ref.  proposes an energy management system based on fuzzy logic. Research on the design of

energy management systems ought to consider low complexity, encompassing both input and rule numbers .

An energy management system for a connected microgrid utilizing fuzzy logic based on the Mamdani algorithm was

introduced by . Making decisions regarding the management of the energy flow in the microgrid model—which is made

up of energy storage components and renewable energy sources—is the primary goal. A scheme that combines genetic

algorithms and fuzzy logic was used to realize the optimization.

A challenge for microgrid energy management systems is managing uncertainty. This issue was resolved by using

oversized batteries, which is not the best solution. Load and renewable energy resources, like wind turbines and PV

modules, can be predicted using techniques like combining multiple artificial neural networks with other techniques to

manage uncertainties in the energy management system. Research has attempted to reduce production costs, improve

the utilization of distributed energy sources, and reduce emissions by employing various kinds of artificial neural networks

in studies based on energy management systems .

Online energy management systems have an advantage over offline ones because they can manage uncertainties by

looking at real-time data, which is particularly useful given the intermittent nature of renewable energy resources and the

highly stochastic nature of market prices and loads. Every distributed energy source and customer can now benefit from

the application of an energy and load management model based on reinforcement learning .

A program based on incentive-based demand response was proposed by Nnamdi and Xiaohua  for the operations of

grid-connected microgrids. The grid-connected operational mode of a microgrid was examined using the game theory-

based demand response program. The findings indicate that when the grid operator’s distributed generation benefit is

maximized at the price of minimizing fuel/transaction costs, lower costs could be obtained in the microgrid.

In Ref. , a new deep learning-based prediction model for microgrid operation is proposed, considering renewable

energy resources, load, and day-ahead price uncertainties. To overcome demand-side uncertainties, a program was

developed to provide participants with optimal incentive rate strategies, as different customers have different attitudes

toward paid incentives. In this program, reasonable incentive rates are determined according to customers’ bid/offer data

by using ranking points to determine the clustering structure.

A summary of artificial intelligence methods-based energy management systems applications in microgrids is given in

Table 5.

Table 5. Artificial intelligence methods-based energy management systems applications.

Ref. Proposed Method Energy Management Application

Generative
adversarial network

It aims at managing uncertainties in the output power of renewable energy sources with a
data-driven, artificial intelligence-based energy management strategy for isolated microgrids.

Deep learning
Models with two different recurrent neural network architectures (RNN), long short-term

memory (LSTM) and gated recurrent unit (GRU) were used to predict wind speed and solar
irradiance.

Fuzzy logic
controllers

An application has been developed for energy management in microgrids with multiple
operating modes.
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Ref. Proposed Method Energy Management Application

Fuzzy logic
controllers

For the best possible control of the energy storage system in a residential microgrid, a fuzzy
logic controller-based energy management system is suggested.

Artificial neural
networks

Energy management system-based studies aim to reduce production costs, increase the use
of distributed energy resources, and reduce emissions.

Reinforcement
learning It manages uncertainties by looking at real-time data with online energy management systems.

Game theory Fuel/transaction costs are minimized, and the grid operator’s distributed generation benefit is
maximized at its price.

Deep learning
To overcome demand-side uncertainties, a program was developed to provide participants

with optimal incentive rate strategies, as different customers have different attitudes toward
paid incentives.

In Ref. , energy management during a grid outage in microgrids—each with two photovoltaic and wind generators in

addition to local load—was examined. To lower generation costs brought on by the randomness of the load and the

intermittent nature of the solar capacity, a multi-agent-based energy management system based on the differential

evolution algorithm in the Java Tool Development Framework (JADE) was employed. The best solution was selected by

considering critical loads, and this system also took grid price fluctuations into account.

Energy management systems are also designed for microgrids containing homes and buildings . Distributed generation

management and coordination of demand response are part of the energy management system optimization process. The

main purpose of the cost function is to meet the customer’s energy and heat demands while reducing operating expenses.

The Hypertext (HTPP) communication protocol forms the basis of the communication platform of agents.

For DC microgrids, energy management systems using artificial intelligence-based algorithms and multi-agent systems to

ensure supply-demand balance and power quality in the system can be used . Additionally, a fully decentralized control

approach based on multi-agent systems can also be applied. In Ref. , a microgrid design including photovoltaic

modules, a wind turbine, a lithium-ion battery energy storage system, critical and non-critical DC loads, and a grid is

proposed, and energy management of this microgrid system is obtained by using a multi-agent-based control structure.

Distributed generation agents, battery agents, load agents, and grid agents are further components of the multi-agent

system. These agents communicate with one another, share data (like power, voltage, current, and charge level) between

the units, and complete the tasks that have been delegated to them in the multi-agent system.

Energy management systems based on multi-agent systems can also optimize energy from renewable resources by

employing Maximum Power Point Tracking (MPPT) algorithms. An artificial neural network controller can be used to

control the energy storage system in addition to the multi-agent system-based energy management system. This

maximizes the charge and discharge of batteries . The goal of the study is to balance the power within the microgrid.

This study offers a flexible control to achieve this balance. MATLAB/Simulink is used to model all components of the

designed microgrid. JADE is used to create agents for multi-agent systems on the system and design the communication

and information sharing between the generated agents. The program, called MACSIMJX, facilitates the relationship and

communication between JADE and MATLAB in this design. This ensures that the agents designed in JADE and the

microgrid designed in MATLAB cooperate.

In Ref. , an energy management system based on multiple agents is used. This system takes into account various load

models and energy from distributed energy resources. They proposed a cutting-edge method that inspires customers to

participate. Using JADE programming, this proposal was validated on interconnected grids. The management system

provides customers with an attractive benefit-cost ratio and reduces peak consumption.

Ref.  introduced a multi-agent hybrid energy management system that combines the best features of decentralized and

centralized approaches to optimize the economic operation of the microgrid. A novel simulation platform for energy

management systems was developed and implemented in the C++ programming language, based on the client-server

architecture.

In Ref. , an intelligent and sustainable energy management system for a microgrid based on a multi-agent system is

examined. The system is designed to address issues brought on by the intermittent availability of renewable energy

resources. Furthermore, the system optimizes the utilization of available AC and/or DC renewable energy sources by

leveraging load flexibility and the complementarity of renewable resources. An evaluation of this proposed multi-agent
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framework is conducted through a co-simulation for a microgrid linked to the main grid, utilizing the MATLAB and JADE

platforms.

A summary of multi-agent energy management systems applications in microgrids is given in Table 6.

Table 6. Multi-agent system-based energy management systems.

Ref. Proposed Method Energy Management Application

Multi-agent management with
differential evolution algorithm

Production costs were decreased by using a multi-agent management system based
on JADE’s differential evolution algorithm.

Multi-agent-based energy
management

By applying energy management system optimization between distributed
generation management and coordination of demand response, it aimed at reducing

operating expenses.

Multi-agent with MATLAB Multi-agent systems are used in the designed DC microgrid to guarantee power
quality and supply-demand balance.

Multi-agent with JADE
It is based on optimizing the energy obtained from renewable sources using MPPT

algorithms. JADE was used to design communication and information shared
between the created agents.

Multi-agent with JADE
Taking into account various load models and energy from distributed energy

resources, the application provides customers with an attractive benefit-cost ratio
and reduces peak consumption.

Multi-agent and based on the
client-server architecture

The microgrid’s economic performance was enhanced by developing a client-server
architecture-based simulation platform for energy management systems.

Multi-agent with MATLAB and
JADE

The application, which maximizes load flexibility and the use of renewable
resources, was developed using MATLAB and JADE platforms.
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