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Effective collision risk reduction in autonomous vehicles relies on robust and straightforward pedestrian tracking.

Challenges posed by occlusion and switching scenarios significantly impede the reliability of pedestrian tracking.
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1. Introduction

In recent years, the significance of pedestrian tracking in autonomous vehicles has garnered considerable attention

due to its pivotal role in ensuring pedestrian safety. Existing state-of-the-art approaches for pedestrian tracking in

autonomous vehicles predominantly rely on object detection and tracking algorithms, including Faster R-CNN

(Region-based Convolutional Neural Network), YOLO (You Only Look Once) and SORT algorithms . However,

these methods encounter issues in scenarios where pedestrians are occluded or only partially visible .

More specifically, the challenges in pedestrian tracking are multifaceted, ranging from crowded urban environments

to unpredictable pedestrian behavior . Existing algorithms often struggle to handle scenarios where individuals

move behind obstacles, cross paths, or exhibit sudden changes in direction. Furthermore, adverse weather

conditions, low lighting, and dynamic urban landscapes pose additional hurdles for accurate pedestrian tracking .

These issues underscore the need for advanced pedestrian tracking solutions that can adapt to diverse and

complex real-world scenarios.

In response to these challenges, the research takes inspiration from recent advancements in deep learning and

object detection. Deep learning techniques, with their ability to learn intricate patterns and representations from

data, have shown promise in overcoming the limitations of traditional tracking methods. Leveraging the capabilities

of the YOLOv8 algorithm for object detection, the approach aims to enhance the accuracy and robustness of

pedestrian tracking in dynamic and challenging environments . By addressing the limitations of existing

algorithms, researchers aspire to contribute to the development of pedestrian tracking systems that are both

reliable and adaptable.

The quest for improved pedestrian tracking is not solely confined to the domain of autonomous vehicles . The

relevant applications extend to various fields, such as surveillance, crowd management, and human–computer

interaction. Accurate pedestrian tracking is crucial for ensuring public safety, optimizing traffic flow, and enhancing

the overall efficiency of smart city initiatives . The effectiveness of pedestrian tracking is also integral for a
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myriad of applications in the context of urban environments, and in smart cities, where the integration of technology

aims to enhance the quality of life, with pedestrian tracking playing a crucial role. Efficient tracking systems can

contribute to optimized traffic management, improved public safety, and enhanced urban planning . Beyond traffic

applications, pedestrian tracking finds applications in surveillance, where monitoring and analyzing pedestrian

movement are essential for security . Additionally, in human–computer interaction scenarios, accurate tracking is

pivotal for creating responsive and adaptive interfaces, offering a wide array of possibilities for innovative

applications . Therefore, the advancements in pedestrian tracking have far-reaching implications, influencing

various aspects of the daily lives and the development of smart city ecosystems.

2. Pedestrian Tracking in Autonomous Vehicles

Recent advancements in pedestrian tracking encompass a diverse array of methods and algorithms, broadly

classified into the following categories:

Multi-Object Tracking (MOT) Methods:

These methods are designed to concurrently track multiple pedestrians within a scene. Traditional

approaches often employ the Hungarian algorithm for association, linking detections across frames .

Recent advancements leverage deep neural networks, such as TrackletNet  and DeepSORT, to learn

features and association scores, enhancing tracking accuracy.

Re-identification-based Methods:

This category integrates appearance-based and geometric feature-based techniques to identify and track

pedestrians across different camera views. Notably, Siamese networks are employed to learn a similarity

metric between pairs of images .

Contemporary methods incorporate attention mechanisms to emphasize discriminative regions of

pedestrians in order to improve tracking precision .

Online Multi-Object Tracking: Online tracking methods dynamically track multiple pedestrians in real-time.

Techniques include deep learning-based re-identification  and online multiple hypothesis tracking .

Multi-Cue Fusion: Strategies in this category amalgamate various cues, such as color, shape, and motion, to

enhance tracking robustness in complex scenes. For instance, the multi-cue multi-camera pedestrian tracking

(MCMC-PT) method integrates color, shape, and motion cues from multiple cameras for comprehensive

pedestrian tracking .

This diverse landscape of pedestrian tracking methodologies underscores the ongoing efforts to address

challenges in occlusion, partial visibility, and dynamic scenarios. Each approach brings its unique strengths,
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contributing to the advancement of pedestrian tracking in autonomous vehicle applications.

In the research presented in , three frameworks for multi-object tracking were evaluated: tracking-by-detection

(TBD), joint-detection-and-tracking (JDT), and a transformer-based tracking method. DeepSORT and StrongSORT

were classified under the TBD framework. The front-end detector’s performance significantly impacts tracking, and

enhancing it is crucial. The transformer-based framework excels in MOTA (multiple object tracking accuracy) but

has a large model size, while the JDT framework balances accuracy and real-time performance.

In , an occlusion handling strategy for a multi-pedestrian tracker is proposed, capable of retrieving targets

without the need for re-identification models. The tracker can manage inactive tracks and cope with tracks leaving

the camera’s field of view, achieving state-of-the-art results on three popular benchmarks. However, the performed

comparison does not include DeepSORT or StrongSORT algorithms.

The authors of  propose a framework model based on YOLOv5 and StrongSORT tracking algorithms for real-

time monitoring and tracking of workers wearing safety helmets in construction scenarios. The use of deep

learning-based object detection and tracking algorithms improves accuracy and efficiency in helmet-wearing

detection. The study suggests that changing the box regression loss function from CIOU to Focal-EIOU can further

improve detection performance. However, the study’s limitation is its evaluation on a specific dataset, potentially

limiting generalization to other datasets or scenarios.

The VOT2020 challenge assessed different tracking scenarios, introducing innovations like using segmentation

masks instead of bounding boxes and new evaluation methods. Most trackers relied on deep learning, particularly

Siamese networks, emphasizing the role of AI and deep learning in advancing object tracking for future

improvements . In , the utilization of the YOLOv5 model and the StrongSORT algorithm for ship detection,

classification, and tracking in maritime surveillance systems is examined. The practical results demonstrate high

accuracy in ship classification and the capability to track at a speed approaching real-time. The influence of

StrongSORT contributes to enhancing tracking speed, confirming its effectiveness in maritime surveillance

systems.

In , fine-tuning plays a crucial role in adapting the pre-trained YOLOv5 model for brain tumor detection,

significantly enhancing the model’s performance in identifying specific brain tumors within radiological images. In

another study , a direct comparison with the performance of StrongSORT in its advanced version was

conspicuously omitted. While utilizing the KC-YOLO approach based on YOLOv5 in their detection algorithm, the

study did not surpass the capabilities of more recent versions like YOLOv8. Introducing newer updates could

potentially enhance StrongSORT++, as illustrated in , showcasing its substantial outperformance across various

metrics, including HOTA and IDF1, on the MOT17 and MOT20 datasets.

The impact of fine-tuning is evident in a machine learning study , where deep learning models identified

diseases in maize leaves. Fine-tuning significantly improved the performance of pre-trained models, resulting in

disease classification accuracy rates exceeding 93%. VGG16, InceptionV3, and Xception achieved accuracy rates
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surpassing 99%, demonstrating the effectiveness of transfer learning, as previously shown in , and the positive

impact of fine-tuning on disease detection in maize leaves .

In Table 1, a comparison is presented between StrongSORT and other multi-object tracking methods with a focus

on the advantages and disadvantages of its method.

Table 1. Comparison overview between StrongSORT and other multi-object trackers.

In recognizing the identified limitations within StrongSORT, such as a slightly slower runtime in specific cases, it

becomes imperative to strike a balance in utilizing its features while simultaneously addressing challenges in

diverse implementation environments. Future research endeavors will delve into a meticulous examination of the

algorithm’s efficiency concerning occlusions and identity switches.

2.1. YOLOv8

YOLOv8 (You Only Look Once version 8) represents a significant advancement over its predecessors, YOLOv7

and YOLOv6, incorporating multiple features that enhance both speed and accuracy. A notable addition is the

spatial pyramid pooling (SPP) module, enabling YOLOv8 to extract features at varying scales and resolutions .

This facilitates the precise detection of objects of different sizes. Another key feature is the cross stage partial
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Method Advantages Disadvantages

StrongSORT

Simple and efficient

Robustness to occlusions

Robustness to identity switches

Runs relatively slowly

Negligible extra computational cost

DeepSORT
Simple and efficient

Limited robustness to occlusions and identity
switches

TrackletNet
Robust to occlusions and identity switches Complex architecture and not real-time

DMAN Robust to occlusions and identity switches Not real-time

SORT Simple and efficient
Limited robustness to occlusions and identity

switches

ATOM Accurate tracking Complex architecture and not real-time

IVDM 
Enhanced handling of occlusions and

identity switches
Needs evaluation against real-time

performance
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network (CSP) block, reducing the network’s parameters without compromising accuracy, thereby improving both

training times and overall performance .

Evaluation of prominent object detection benchmarks, including COCO and Pascal VOC datasets, showcases

YOLOv8’s exceptional capabilities. The COCO dataset, with 80 object categories and complex scenes, saw

YOLOv8 achieving the highest-ever mean average precision (mAP) score of 55.3% among single-stage object

detection algorithms. Additionally, it achieved a remarkable real-time speed of 58 frames per second on an NVIDIA

GTX 1080 Ti GPU. In summary, YOLOv8 stands out as an impressive object detection algorithm, delivering high

accuracy and real-time performance. Its ability to process the entire image simultaneously makes it well suited for

applications such as autonomous driving and robotics. With its innovative features and outstanding performance,

YOLOv8 is poised to remain a preferred choice for object detection tasks in the foreseeable future .

Figure 1 illustrates the performance of YOLOv8 in real-world scenarios .

Figure 1. YOLOv8 performance.

2.2. DeepSORT

DeepSORT is an advanced real-time multiple objects tracking algorithm that leverages deep learning-based

feature extraction coupled with the Hungarian algorithm for assignment. The code structure of DeepSORT

comprises the following key components :

Feature Extraction: Responsible for extracting features from input video frames, including bounding boxes and

corresponding features.

Detection and Tracking: Detects objects in each video frame and associates them with their tracks using the

Hungarian algorithm.

Kalman Filter: Predicts the location of each object in the next video frame based on its previous location and

velocity.

Appearance Model: Stores and updates the appearance features of each object over time, facilitating re-

identification and appearance updates.
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Re-identification: Matches the appearance of an object in one video frame with its appearance in a previous

frame.

Output: Generates the final output—a set of object tracks for each video frame.

These components collaboratively form a comprehensive tracking algorithm. DeepSORT can undergo training

using a substantial dataset of video frames and corresponding object bounding boxes. The training process of

DeepSORT fine-tunes the various algorithm’s components, such as the appearance model and feature extraction,

aiming to enhance the algorithm’s overall performance. Despite its strengths, DeepSORT also faces unique

challenges, including:

Blurred Objects: Tracking difficulties due to image artifacts caused by blurred objects .

Intra-object Changes: Challenges in handling changes in the shape or size of objects .

Non-rigid Objects: Difficulty in tracking objects appearing for short durations .

Transparent Objects: Challenges in detecting objects made of transparent materials.

Non-linear Motion: Difficulty in tracking irregularly moving objects .

Fast Motion: Challenges posed by quickly moving objects.

Similar Objects: Difficulty in differentiating objects with similar appearances .

Occlusion: Tracking challenges when objects overlap or obstruct each other .

Scale Variation: Difficulty when objects appear at different scales in the image .

To address these challenges, the StrongSORT algorithm has been proposed aiming to offer solutions which

enhance tracking robustness and efficiency .

2.3. StrongSORT

The StrongSORT algorithm enhances the original DeepSORT by introducing the AFLink algorithm for temporal

matching to person tracking and the GSI algorithm for temporal interpolation of matched individuals. New

configuration options have been incorporated to facilitate these improvements :

AFLink: A flag indicating whether the AFLink algorithm should be utilized for temporal matching.

Path_AFLink: The path to the AFLink algorithm model to be employed.
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GSI: A flag indicating whether the GSI algorithm should be employed for temporal interpolation.

Interval: The temporal interval to be applied in the GSI algorithm.

Tau: The temporal interval to be used in the GSI algorithm.

The original DeepSORT application is updated through the integration of the AFLink and GSI algorithms, providing

enhanced capabilities for temporal matching and interpolation of tracked individuals.

Figure 2 presents the framework of the AFLink model. It adopts the spatio-temporal information of two tracklets as

input and predicts their connectivity .

Figure 2. Framework of the AFLink model.
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