
Monocular Depth Estimation with Deep Learning
Subjects: Computer Science, Artificial Intelligence

Contributor: Armin Masoumian, Hatem A. Rashwan, Julián Cristiano, M. Salman Asif, Domenec Puig

Significant advancements in robotics engineering and autonomous vehicles have improved the requirement for precise

depth measurements. Depth estimation (DE) is a traditional task in computer vision that can be appropriately predicted by

applying numerous procedures.  This is vital in disparate applications such as augmented reality and target tracking.

Conventional monocular DE (MDE) procedures are based on depth cues for depth prediction. Various deep learning

techniques have demonstrated their potential applications in managing and supporting the traditional ill-posed problem.
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1. Introduction

Indisputable breakthroughs in the field of computational photography have helped the emergence of novel functionalities

in the imaging process . Many works have been carried out so far in the field of computer vision . Depth

estimation (DE) is a traditional computer vision task that predicts depth from one or more two-dimensional (2D) images.

DE estimates each pixel’s depth in an image using offline-trained models. In machine perception, recognition of some

functional factors such as the shape of a scene from an image and image independence from its appearance seems to be

fundamental . DE has great potential for use in disparate applications, including grasping in robotics, robot-assisted

surgery, computer graphics, and computational photography .

The DE task needs an RGB image and a depth image as output. The depth image often consists of data about the

distance of the object in the image from the camera viewpoint . The computer-based DE approach has been under

evaluation by various investigators worldwide, and the DE problem has been an exciting field of research. Most successful

computer-based methods are employed by determining depth by applying stereo vision. With the progress of recent deep

learning (DL) models, DE based on DL models has been able to demonstrate its remarkable efficiency in many

applications . DE can be functionally classified into three divisions, including monocular depth estimation (MDE),

binocular depth estimation (BDE), or multi-view depth estimation (MVDE).

MDE is an identified significant challenge in computer vision, in which no reliable cues exist to perceive depth from a

single image. For instance, stereo correspondences are easily lost from MDE images . Thus, the classical DE methods

profoundly depend on multi-view geometry such as stereo images . These approaches need alignment procedures,

which are of great importance for stereo- or multi-camera depth measurement systems . Consequently, using visual

cues and disparate camera parameters, BDE and MVDE methods helps to obtain depth information (DI). The majority of

BDE or MVDE techniques can accurately estimate DI; however, many practical/operational challenges, such as

calculation time and memory requirements for different applications, should be considered . The application of

monocular images seems to be an excellent idea to capture DI to solve the memory requirement problem. The recent

progression in using convolutional neural networks (CNN) and recurrent convolutional neural networks (RNN) yields a

considerable improvement in the performance of MDE procedures .

2. Depth Estimation (DE)

Objects’ depth in a scene possesses the remarkable ability of estimation/calculation by applying passive and active

approaches. In the active approaches (i.e., applications of LIDAR sensors and RGB-D cameras), the DI is achieved

quickly . RGB-D camera is a specific type of depth-sensing device that combines an RGB image and its

corresponding depth image . RGB-D cameras can be used in various devices such as smartphones and unmanned

aerial systems due to their low cost and power consumption . RGB-D cameras have limited depth range and they suffer

from specular reflections and absorbing objects. Therefore, many depth completion approaches have been proposed to

mitigate the gap between sparse and dense depth maps .
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In passive techniques, DI is often achieved using two principal methodologies: depth from stereo images and monocular

images. The main purpose of both techniques is to assist in building the spatial structure of the environment, which

presents a 3D view of the scene. After achieving DI, the situation of the viewer would be recognized relative to the

surrounding objects. Stereo vision is a widely-applied depth calculation procedure in the computer vision area. Stereo

vision is known as a computer-based passive approach in which stereo images are applied to extract DI . To

compute disparity, pixel matching must be implemented among the pixels of both images. It is worth noting that a good

correspondence (pixels) matching needs the rectification of both images. Rectification is defined as the transformation

process of images to match the epipolar lines of the original images horizontally . 

Sometimes, the application of algorithms for calculating depth may create different challenges. For instance, the matching

cost function utilized in the algorithm can generate false-positive signals, which eventuates in the creation of depth maps

with low accuracy. Thus, the use of post-processing approaches (i.e., median filter, bilateral filter, and interpolation) is of

great importance in stereo vision applications to delete noise and refine depth maps .

On the contrary, MDE does not require rectified images since MDE models work with a sequence of images extracted

from a single camera. This simplicity and easy access are one of the main advantages of MDE compared to stereo

models, which require additional complicated pieces of equipment. Because of that, in recent years, demand for MDE

increased significantly. Most MDE methods focused on estimating distances between scene objects and the camera from

one viewpoint. It is essential for regressing depth in 3D space in MDE methods since there is a lack of reliable

stereoscopic visual relationship in which images adopt a 2D form to reflect the 3D space . Therefore, MDE models try

to recover the depth maps of images, which reflects the 3D structure of the scene. Most of the MDE models have the

main architecture, which contains two main parts: depth and pose networks. The depth network predicts the depth maps.

In turn, the pose network works as an ego-motion estimation (i.e., rotation and translation of the camera) between two

successive images. The estimated depth (i.e., disparity) maps with the ego-motion parameters used to reconstruct an

image should be compared to the target image.

3. Input Data Shapes for MDE Applying Deep Learning

3.1. Mono-Sequence

Monocular sequence input is mainly used for training the UL models. Figure 1 shows the basic structure of mono-

sequence models, which have a single input image and a single output image. UL networks consist of a depth network for

predicting depth maps and a pose network for camera pose estimation. The camera pose estimation works similarly to

image transformation estimation, which helps to improve the results of MDE. These two sub-networks are connected in

parallel, and the whole model is obliged to reconstruct the image. In mono-sequence, mostly the geometric constraints are

built on adjacent frames. Lately, researchers have used VO  to predict the camera motion for learning the scene depth.

Zhou et al.  were the pioneers of mono-sequence input type, and they proposed a network to predict camera motion

and depth maps with photometric consistency loss and reconstruction loss.

Figure 1. Data input/output structure of mono-sequence models. Single image input and single image output.

Furthermore, Mahjourian et al.  introduced a network with 3D geometric constraints and enforced consistency of the

estimated 3D point clouds and ego-motion across consecutive frames. Recently, Masoumian et al.  designed two jointly

connected sub-networks for depth prediction and ego-motion. They used CNN-GCN encoder–decoder architecture for

their networks with three losses: reconstruction loss, photometric loss, and smooth loss. In addition, Shu et al. 

proposed a similar method with two jointly connected depth and pose predictions that were slightly different. They also

added a feature extractor encoder to their model to improve the quality of their predicted depth maps.

3.2. Stereo Sequence

The projection and mapping relationship between the left and right pairwise images is mainly constrained by stereo

matching. In order to build geometric constraints, a stereo images dataset is required. These types of inputs are
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commonly used in UL and SL networks. Figure 2 represents the basic structure of stereo sequence models which have

left and right images as input and a single output. Similar to the monocular sequence input data shape, the stereo

sequence works with image reconstruction with slight differences. An image will be reconstructed based on warping

between the depth map and the right image. For instance, Kuznietsov et al.  proposed an SSL model for MDE with

sparse data, and they built a stereo alignment as a geometric constraint.

Figure 2. Data input/output structure of stereo sequence models. Stereo pairs of images as an input and single image

output.

Furthermore, Godard et al.  designed a UL network with left–right consistency constraints. They used CNN-based

encoder–decoder architecture for their model with the reconstruction loss, left–right disparity consistency, and disparity

smoothness loss. Recently, Goldman et al.  proposed a Siamese network architecture with weight sharing, which

consists of two twin networks, each learning to predict a disparity map from a single image. Their network is composed of

an encoder–decoder pair with skip connections.

3.3. Sequence-to-Sequence

Sequence-to-sequence data input is necessary for recurrent neural network (RNN) models . These models have

memory capability, which helps the system learn a group of features in sequence images. Figure 3 represents the basic

structure of sequence-to-sequence models, which have a sequence of images as input and a sequence of depth maps as

an output. Most RNN methods use long short-term memory (LSTM) to learn the long-term dependencies with a three-gate

structure . However, RNN and CNN networks will be combined to extract spatial–temporal features. The sequence-to-

sequence data primarily will be trained on SL models. Kumar et al.  proposed an MDE model with ConvLSTM layers for

learning the smooth temporal variation. Their model consists of encoder–decoder architecture. Furthermore, Mancini et al.

 improved LSTM layers to obtain the best outcome of the predicted depth maps by feeding the input images

sequentially to the system.

Figure 3. Data input/output structure of sequence-to-sequence models. Sequence of images as an input and sequence of

images as an output.

4. Mde Applying Deep Learning Training Manners

Although DE from multiple images possesses a lengthy background in the computer vision area, the DI extraction process

from single images is considered a novel concept in DL. The advancements have initiated comprehensive investigations

of the DI concept in DL techniques. The most critical challenge towards the application of DL is the absence of datasets

that fit the problem . This challenge may also be of great importance for the MDE network. Data applied in

training may be collected by LIDAR sensors, RGB-D cameras, or stereo vision cameras. Despite the expensive data
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collection process, disparate learning strategies have been developed to decrease dependency on the dataset used for

training. The learning process in MDE networks can be divided into three parts, including SL, UL, and SSL 

.

4.1. Supervised Learning Approach

The SL approach for DE needs pixel-wise ground truth DI . The SL procedure applies ground truth depth (GTD) to train

a neural network as a regression model . Eigen et al.  were pioneers in investigating DI to train a model using

DL. They explained that their developed CNN-based network consists of two deep network stacks. 

After Eigen’s investigation, different procedures were implemented to increase the precision of the estimated depth map

(EDP). For example, Li et al.  developed a DL network applying conditional random fields (CRFs). They utilized a two-

stage network for depth map estimation and refinement. In the first stage, a super-pixel technique on the input image is

applied, and image patches are extracted around these super-pixels. In the second stage, CRFs are applied to refine the

depth map by changing the super-pixel depth map to the pixel level. In order to extract an appropriate depth map, some

approaches use geometric relationships. For example, Qi et al.  utilized two networks to estimate the depth map and

surface normal from single images.

The dataset’s quality is an introductory section in SL systems, similar to methodology. Dos Santos et al.  paid enough

attention to this challenge. They developed an approach to creating denser GTD maps from sparse LIDAR measurements

via enhancing the valid depth pixels in depth images. They compared the obtained results of their trained model with both

sparse GTD maps and denser GTD maps. They understood that the application of denser ground truth results yields

increasing performance compared to sparse GTD maps. Ranftl et al.  developed an outstanding learning strategy that

can involve various datasets to improve the efficiency of the MDE network. To prepare their dataset for three-dimensional

movies, they applied stereo matching to conclude the depth of frames of these movies. Disparate unclear problems,

including changing resolution and negative/positive disparity values, emerged during the creation of this dataset.

According to the assistance of their developed procedures for incorporating multiple datasets, they achieved high

precision with their model MDE problem. Recently, Sheng et al.  proposed a lightweight SL model with local–global

optimization. They used an autoencoder network to predict the depth and used a local–global optimization scheme to

realize the global range of scene depth.

4.2. Unsupervised Learning Approach

Increment of layers and trainable parameters in deep neural networks significantly increases the requirement for the train

data, resulting in difficulty in achieving GTD maps. For this reason, UL approaches become an appropriate choice

because unlabeled data is relatively easier to find . Garg et al.  were the pioneers of developing a promising

procedure to learn depth in an unsupervised fashion to remove the requirement of GTD maps. Up until now, developed

UL approaches have applied stereo images, and thus, supervision and train loss depend intensely on image

reconstruction. In order to train a depth prediction network, consecutive frames from a video may have great potential for

application as supervision. Camera transformation estimation (pose estimation) between successive frames is the major

challenge of this procedure, which results in extra complexity for the network.

In order to obtain greater accuracy in DE, some approaches have existed that possess the great potential of application to

merge multiple self-supervision procedures into one. For instance, Godard et al.  applied MDE and estimated relative

camera poses to build other stereoviews and contiguous frames in the video sequence. They added a pose network to

their model to predict relative camera pose in adjacent frames. One of the crucial challenges towards using self-

supervised approaches via video is occluded pixels. They applied minimum loss compared to the classical average loss to

obtain non-occluded pixels, which is known as a significant improvement . The improvement in the precision of UL

approaches has motivated other investigators to modify knowledge distillation methods for the MDE problem. Pilzer et al.

developed a system to adapt an unsupervised MDE network to the teacher–student learning framework by applying

stereo image pairs to train a teacher network. Despite the promising performance of their student network, it was not as

accurate as their teacher network . Masoumian et al.  developed a multi-scale MDE based on a graph convolutional

network. Their network consists of two parallel autoencoder networks: DepthNet and PoseNet. The DepthNet is an

autoencoder composed of two parts: encoder and decoder; the CNN encoder extracts the feature from the input image,

and a multi-scale GCN decoder estimates the depth map. PoseNet is used to estimate the ego-motion vector (i.e., 3D

pose) between two consecutive frames. The estimated 3D pose and depth map are used to construct a target image.
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4.3. Semi-Supervised Learning Approach

Compared to SL and UL approaches, few investigations have been conducted to study the performance of SSL methods

for MDE. Apart from SL and UL approaches, Kuznietsov et al.  developed an SSL method by simultaneously applying

supervised/unsupervised loss terms during training.

In their approach, the estimated disparity maps (i.e., inverse depth maps) were used to rebuild left and right images via

warping. Computation of unsupervised loss term took place by rebuilding the target images. Simultaneously, the

calculation of the supervised loss term occurred by the estimated depth, and GTD maps . Luo et al.  classified the

MDE problem into two subdivisions and investigated them separately. Based on their procedure, the network requirement

for labeled GTD data decreased. Additionally, they corroborated that the application of geometric limitations during

inference may significantly increase the efficiency and the performance. Their developed architecture consists of two sub-

networks, including view synthesis network (VSN) and stereo matching network (SMN). Their proposed VSN synthesizes

the right image of the stereo pair via the left image. In SMN, simultaneous application of left and synthesized right images

occurs in an encoder–decoder architecture pipeline to achieve a disparity map. In SMN, GTD maps are used to calculate

the loss for estimated depth maps.

They first introduced a stereo matching network with GT labeled data and permitted the teacher network to estimate depth

from stereo pairs of an extensive unlabeled dataset. Then, they applied the aforementioned estimated depth

maps/unlabeled dataset to train an optimized student network for MDE . They also investigated the trade-off between

the precision and the density of pseudo labeled depth maps. The density increases as the pixels in the depth map

increase. They concluded the increment of the pseudo labeled depth maps’ precision by enhancing the density.

Additionally, they reported that their MDE network achieved the greatest accuracy when the density of pseudo labeled

depth maps was almost 80% .
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