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3D object detection based on point clouds has many applications in natural scenes, especially in autonomous

driving. Point cloud data provide reliable geometric and depth information. 
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1. Introduction

3D object detection based on point clouds has many applications in natural scenes, especially in autonomous

driving. Point cloud data provide reliable geometric and depth information. However, point clouds are disordered,

sparse, and unevenly distributed, increasing the difficulty of object detection .

Currently, existing object detection methods mainly include image-based, point cloud-based, and multi-sensor

methods . In comparing them, image-based methods lack depth and 3D structure information, making it

challenging to identify and locate 3D objects accurately in 3D space. Therefore, plans based on image information

tend to be less effective than point clouds . GS has proposed fusing point cloud and image data for object

detection . Subsequently, the classic methods MV3D, PC-CNN , AVOD , PointPainting , etc., have been

proposed. However, although these fusion methods can integrate the characteristics of point clouds and images to

a certain extent for recognition, the vast amount of calculation involved and the complex network has brought

considerable challenges to this field. Thus, point cloud-based methods are the main methods for autonomous

driving. The method based on the point cloud has developed rapidly in the last few years, and many classic

methods have been proposed, including Pointnet , Pointnet++ , VoxelNet , SE-SSD , etc.

Early works usually convert raw point clouds into regular intermediate representations, including projecting 3D

point cloud data from bird’s eye or frontal views into 2D images or dense 3D voxels. However, using voxel

conversion to improve efficiency can lead to a lack of critical information, resulting in false and missed detection.

PointPillars  encode point clouds with Pillar coding, which achieves extremely fast detection speed. However, it

loses many important foreground points simultaneously, making the effect of detail processing not ideal. There

have been a lot of missed and false detections in PointPillars. To solve this critical problem, TANet  enhances

the local characteristics of the voxel by introducing an attention mechanism. However, due to the information loss

during voxel conversion, it is impossible to avoid the occurrence of false and missed detection. In DA-PointRCNN

, the density sampling method can pay better attention to where the clouds are sparse and improve missed

detection. However, false detection exists due to ignoring the importance of feature information.
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2. Voxel-Based Methods

In point cloud-based methods, converting the raw point cloud into a regular voxel grid and extracting local features

for object detection has attracted much attention. the The voxel concept was first proposed with VoxelNet, in which

the point cloud is divided into voxels by block and detected by extracting local features from each voxel. However,

even this requires considerable computation. SECOND  adds a sparse convolution operation based on

VoxelNet to speed up calculation. PointPillars directly converts point clouds into fake images, avoiding the time-

consuming convolution calculation.

According to their different detection stages, the existing voxel detectors can be roughly divided into single-stage

detectors and two-stage detectors. While these methods are efficient and straightforward, due to the reduction of

spatial resolution and insufficient structural information their detection performance is significantly affected when

the point cloud is relatively sparse. Thus, SA-SSD  supplements the utilization of structural information by

adding auxiliary networks. HVNet  offers a hybrid voxel network that refines the projected and aggregated

feature maps from multiple scales to improve detection performance. CIA-SSD  introduces a network

incorporating IOU-aware confidence correction to extract spatially informative features of detected objects. In

comparison, two-stage detectors can achieve higher performance at the cost of higher computation and storage.

Part-A2  proposes a two-stage detector consisting of part perception and aggregation modules, which is better

able to utilize the location information of detected objects.

In general, detection methods based on voxel detection can achieve better detection effects and higher efficiency

to a large extent. However, voxelizing the point cloud inevitably causes information loss. Later research work has

made up for the loss and distortion caused by the point cloud data processing stage by continuously introducing

complex module designs, which has made up for this defect to a certain extent; however, this has a great impact

on detection efficiency. Therefore, using voxelization to process point cloud data has certain limitations.

3. Point-Based Methods

Unlike voxel-based detection methods, point-based methods directly process the disordered and cluttered point

cloud. Thus approach obtains features point-by-point in order to predict each point. The point cloud itself contains

very rich physical structure information. Therefore, a point-wise processing network was first proposed in the form

of PointNet. This network directly takes the original point cloud as input, guaranteeing no loss of physical

information from the original point cloud. Subsequently, PointNet++ improved PointNet to improve the detection

efficiency of the network and further optimize the network structure. Most of the subsequent point-based methods

have used this network and its variants to point cloud for processing. PointRCNN  utilizes PointNet++ to extract

features from raw point clouds and a Region Prediction Network (RPN) to generate prediction boxes. 3DSSD 

introduces a 3D single-stage detection network which uses Euclidean space to achieve feature sampling for far

points. PointGNN  adds a graph neural network to the framework of 3D object detection, effectively improving

recognition accuracy. Proposal Contrast  proposed a new unsupervised point cloud pre-training framework to
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achieve better detection results. Proficient Teachers  introduces a new 3D SSL framework that provides better

results and removes the necessity of using confidence-based thresholds to filter pseudo-labels.

Point-based detection methods directly process the raw point cloud and effectively utilize the physical information

of the point cloud itself. However, the huge amount of data inevitably takes up a lot of time and computing

resources. Therefore, improving the efficiency of point-based detection is a bottleneck for this method.

4. Hybrid Attention Regions with CNN Features (HA-RCNN)

Unlike voxel-based methods, point-based methods need to perform point-wise detection, and as such need to pay

more attention to foreground points (i.e., cars, pedestrians, etc.). However, most current point-based object

detection frameworks usually adopt downsampling methods, such as random sampling  or farthest point

sampling. Although these sampling methods can improve computational efficiency, the essential foreground points

are ignored. Therefore, in this research, researchers aim to train a point-based model to better retain the

information of foreground points and efficiently detect multiple types of objects at one time. Based on this,

researchers propose an efficient point cloud-based object detection algorithm.

As shown in Figure 1a, the proposed model framework mainly consists of three parts: Hybrid Sampling (HS), a

Hybrid Attention Mechanism (HA), and Foreground Point Segmentation. First, the input original point cloud is

processed through hybrid sampling, with as many foreground points retained as possible. Then, the point-wise

features are generated by the HA module and focused. Subsequently, the foreground segmentation network is

used to segment the foreground points and generate prediction boxes. Finally, 3DNMS is used to filter the

prediction box and the refinement module retains the final boxes. In Figure 1b, each sampled point cloud input is

extracted pointwise and then focused in the attention layer. Finally, the generated original pointwise features and

the pointwise features developed by the attention layer are spliced together.
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Figure 1. HA-RCNN model frame diagram (a: Overall frame, b: HA module refinement).
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