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An antigenic determinant (AD) is a portion of an antigen molecule known as an epitope that is recognized by the human

immune system, specifically by antibodies or T and B cells. Recognition of epitopes is considered important in EBPV design to

contain pandemics, epidemics, and endemics due to the outbreak of infectious diseases. To design an effective and viable

EBPV against different strains of a pathogen, it is important to identify the putative T- and B-cell epitopes. Using the wet-lab

experimental approach to identify these epitopes is time-consuming and costly because the experimental screening of a vast

number of potential epitope candidates is required. Fortunately, various available machine learning (ML)-based prediction

methods have reduced the burden related to the epitope mapping process by decreasing the potential epitope candidate list

for experimental trials. Moreover, these methods are also cost-effective, scalable, and fast. 
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1. Introduction

An antigenic determinant (AD) is a portion of an antigen molecule known as an epitope that is recognized by the human

immune system, specifically by antibodies or T and B cells . Recognition of epitopes is considered important in EBPV design

to contain pandemics, epidemics, and endemics due to the outbreak of infectious diseases. The ongoing COVID-19 pandemic

due to the SARS-CoV-2 outbreak is the latest among the major pandemics that have occurred in the last decade . COVID-

19 can be severe and has caused millions of deaths around the world. It is a respiratory illness and affects people according

to the physiology and immune system of the human body. Affected people mostly develop mild to moderate illness and

recover without hospitalization . While the progress in COVID-19 vaccine design so far is remarkable, successfully

vaccinating the worldwide population entails numerous hurdles, from manufacturing to distribution and deployment, and, most

crucially, acceptability.

Due to the rate at which SARS-CoV-2 is circulating in the population, thereby causing unprecedented infections, its chances

of mutating more and more have increased by now. The variant B.1.617.2, named Delta , first identified during a serious

wave of COVID-19 infections in India in April and May 2021 , was declared a variant of concern (VOC) by the “US Centers

for Disease Control and Prevention (CDC)” on 15 June 2021 . Due to its partial resistance to existing vaccines, the infected

cases per day increased to over 400,000 . A study conducted by the Chinese Academy of Medical Sciences confirmed that

viral loads in Delta infections are approximately 1000 times higher than those in previous SARS-CoV-2 variants . The Mu

variant, also known as B.1.621 , first identified in January 2021 in Colombia, was declared a “variant of interest” (VOI) on 26

August 2021 by the European Centre for Disease Prevention and Control (ECDC) . On August 30, “the Mu variant was

added to the World Health Organization’s (WHO’s) watch list after being found to have a constellation of mutations that

indicate potential properties of immune escape” . The most recent variant, B.1.1.529, named Omicron, was first reported to

WHO from South Africa on 24 November 2021 . On 26 November 2021, WHO designated the variant B.1.1.529 a VOC on

the advice of the Technical Advisory Group on Virus Evolution (TAG-VE) . The hotspot of SARS-CoV-2 mutations is the

spike S protein. The spike protein enables the pathogen to infect cells and is the basis for the majority of the vaccines. In , it

has been reported that “out of 10333 spike protein sequences analyzed, 8155 proteins comprised one or more mutations. A

total of 9654 mutations were observed that correspond to 400 distinct mutation sites. The receptor binding domain (RBD)

which is involved in the interactions with human angiotensin-converting enzyme-2 (ACE-2) receptor and causes infection

leading to the COVID-19 comprised 44 mutations that included residues within 3.2 Å interacting distance from the ACE-2

receptor”.

1.1. Epitopes and Paratopes

An antigen is any substance that causes the immune system to produce antibodies against it. Its molecules are large

biological polymers and introduce various molecular attributes that act as interaction sites between antibodies, T  cells and B

cells, and antigen molecules. These interaction sites are called epitopes . Epitopes are of two types: B-cell epitopes
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(BCEs) and T-cell epitopes (TCEs). The fragment of an antigen that is attached to an antibody is called the B-cell epitope .

The BCEs are recognized by B cells and comprise a solvent region that is exposed to an antigen. On the other hand, T cells

have a receptor on their surface, known as the T-cell receptor (TCR) . When presented on the surfaces of APCs that are

linked to MHC molecules, the TCR aids in antigen recognition. TCEs identified by CD8 and CD4 T cells are represented by

MHC class I (MHC I) and class II (MHC II) molecules, respectively . Figure 1 shows an antibody containing two paratopes,

indicating that these two paratopes can bind to two pathogens . Chemical interactions between epitopes and paratopes

that promote antigen–antibody binding are non-covalent .

Figure 1. Antigen recognition by antibodies.

1.2. Need for T- and B-Cell Epitope Prediction

The identification of epitopes is of great importance for many reasons, including EBPV design, antibody production, and

immunodiagnostic tests. They also play a crucial role in activating the human immune system. Among the reasons listed,

EBPV design is important for researchers, biologists, and scientists because there are numerous drawbacks to using whole-

organism vaccines, particularly in immunocompromised patients . EBPVs can be utilized to overcome the issues

associated with heterogeneous and multicomponent vaccines and are seen as an alternative to traditional vaccines. They can

act as powerful alternatives to conventional vaccines due to their low production cost, having less reactogenic and allergenic

responses. A well-trained ML model of experimentally determined epitopes and non-epitopes can identify potential epitopes

as vaccine candidates quickly and efficiently and can reduce the burden related to the epitope mapping process by

decreasing the potential epitope candidate list for experimental trials. Using the wet-lab experimental approach to identify

these epitopes is time-consuming and costly because the experimental screening of a vast number of potential epitope

candidates is required. However, epitope prediction methods based on ML can prove to be cost-effective, scalable, and fast.

The most recent vaccine technology is based on RNA vaccines, which have the distinct advantage of being simple to design

and manufacture. Epitopes are critical, but often overlooked, for boosting the effectiveness of RNA vaccines. Although RNA

vaccines can encode any gene of interest, even the most recent designs commonly encode sequences of original genes from

the natural virus. Epitope prediction can be useful in assisting RNA vaccine design by guiding the sequence design and

vaccine structure. RNA (mRNA) vaccines, on the other hand, can benefit from epitope-based design approaches, in which

both B-cell and T-cell epitopes can be used for vaccine design. The epitope properties determine whether or not the RNA

vaccine will elicit an immune response and which types of responses will be elicited.

2. ML-Based Studies for the Prediction of T- and B-Cell Epitopes

ML is concerned with the automated learning of machines that is not explicitly programmed. It focuses on making data-driven

predictions and has several applications in bioinformatics . Bioinformatics deals with applying computational techniques to

derive knowledge from biological data. It covers the collection, retrieval, storage, manipulation, and data modeling for analysis

or prediction using various algorithms and software . Earlier, one had to explicitly program bioinformatics algorithms, which

was an extremely laborious task for predicting protein structures . However, with the advent of ML algorithms, such

problems have become much easier to solve. In recent years, the exponential growth of T- and B-cell epitope data has

become the primary motivation for researchers to develop ML-based methods for the prediction of ADs or IRDs, i.e., B- and T-

cell epitopes. ML applied to experimentally determined peptide sequence data of pathogens (virus, bacteria, etc.) opens up

new frontiers for areas such as EBPV design, antibody production, and immunodiagnostic tests. The ML-based in silico

approach has emerged as a promising field for epitope prediction . Accordingly, various ML-based studies and methods

exist that utilize the physicochemical properties of amino acids as features or descriptors for the prediction of epitopes (Table

1).

Table 1. Existing studies for T- and B-cell epitope prediction.

[13]

[13]

[13]

[14][15]

[16][17][18]

[19][20]

[21]

[21]

[21]

[22]



Machine Learning in T- and B-Cell Epitope Prediction | Encyclopedia.pub

https://encyclopedia.pub/entry/19473 3/9

Study
Conducted Methodology Adopted Strengths/Limitations

T. Liu et al. 

A feedforward deep neural network-based ensemble
of 11 classifiers was created to predict BCEs. IEDB
was used to obtain the BCE peptide dataset. On the
test set, the model was evaluated using the AUROC

metric.

Model reports peptide as an epitope if classified
by all 11 classifiers. It would provide the best
results if simple majority voting was used for

classification.

Fatoba, A. J. et
al. 

In , potential epitope-based vaccine candidates
were explored. After retrieving 600 genome
sequences of SARS-CoV-2 from the ViPR

repository, CD8+ and CD4+ epitopes and B-cell
(linear) epitopes were generated and screened for
immunogenicity, antigenicity, and non-allergenicity.

The results of  reported 19 candidate T-cell
epitopes (CD8+), which were found to overlap

strongly with 8 B-cell epitopes. The results
provide the basis for an experimental design for
a suitable peptide vaccine against SARS-CoV-

2.

R. Moody et al.

Authors used IEDB prediction tools for predicting B-
cell epitopes and those with high scores in terms of
prediction were selected as candidate epitopes. The

epitopes were then matched to human proteins
using NCBI Blast technology.

The findings showed eleven (11) novel B-cell
epitopes in the host that were capable of

explaining key elements of COVID-19
extrapulmonary disease that previous research

had not been able to explain.

Jespersen MC
et al. 

The authors employed feedforward neural networks
(FFNN) with two hidden layers, each with 25

neurons, an activation function (sigmoid) at all
neurons, and an ADAM as an optimizing function to
predict antibody-specific epitopes (B cell) or epitope
targets of provided cognate antibodies. The dataset

was obtained from the IEDB database. PCA was
used for dimensionality reduction before the model

was trained.

It was shown that a simple set of attributes
retrieved from the cognate antibody boosted the

rate of accuracy in predicting individual
epitopes. Furthermore, sophisticated features

such as Zernike Moments can improve the
model’s predictive potential. When compared to

DiscoTope 2.0, this model performs better in
finding patches overlapping with an actual patch

of an epitope in cross-validation and on an
independent dataset.

Ling-yun Liu et
al. 

The authors used PCA and RNN networks. They
converted the physicochemical properties into digital
vectors, intending to have high-dimensional feature
space, and later PCA was applied to process them.
The output from PCA was used as an input to the

RNN for predicting epitopes.

Prediction results obtained by this process
demonstrated that PCA reduced dimensions,
but at the same time, original features of the

main component were retained, and the rate of
prediction was also improved.

Bin Cheng et
al. 

Authors introduced a novel scale to measure feature
importance, called the relevance of amino acid pair
(RAAP). RAAP was calculated by decomposing the

sequences of amino acids based on their
physicochemical properties.

The successful prediction rate was drastically
improved here by using LSTM. It does not suffer
from gradient instability and is good enough for
textual classification sequences. Fivefold cross-

validation was used to test and validate the
models.

Balachandran
Manavalan et

al. 

Here, a non-redundant dataset was constructed
containing 5500 BCEs experimentally validated, and
6893 non-B-cell epitopes were retrieved from IEDB.
Then, an ensemble model to predict B-cell epitopes
based on ERT (extremely randomized tree) and a

classifier called GB (gradient boosting) was
developed. The model works based on the

physicochemical properties, AA composition, and
combination of dipeptides and PCP as the input

features.

After performing cross-validation on a
benchmark dataset, it was shown that this

model performed far better than the individual
classifiers such as ERT and GB, with an MCC

(Matthews correlation coefficient) of 0.454.

Yuh-Jyh Hu et
al. 

A cost-sensitive strategy based on bagging MDT
was suggested, which integrates two ensemble-

based learning algorithms. Without employing the
prediction of a pre-trained single predictor, it makes

it independent of multiple prediction tools. It can
also learn a meta-classification architecture with

varied data, without being constrained by a
particular hierarchy.

It was demonstrated that the performance of
prediction is superior as compared to a single
epitope predictor. However, epitope prediction
based on meta-learning is purely dependent
upon the predictive strength of various other
pre-trained linear and conformational epitope

prediction tools, which cannot be retained
directly by users. Hence, this limits the flexibility

and applicability of these meta-classifiers.

Jing Ren et al. The authors proposed a novel staged
heterogeneity-based learning model. The model
learns both heterogeneity and characteristics of
data in a phased manner to identify residue of

antigens of conformational B-cell type epitopes that
are heterogeneous, purely based on sequences of
antigens. In the first stage, the model is made to

learn the generic epitope pattern with propensities,
and in the second stage, the same model is made to

It was demonstrated that if heterogeneity was
learned well, the transferability of the model
improved remarkably in handling new data.It

was tested and validated on two different
datasets: one with epitopes determined

experimentally and another with
computationally defined. It showed outstanding

performance that was around twice that of
existing predictors, including CBTOPE.
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3. Tools for T- and B-Cell Epitope Prediction

3.1. Tools for T-Cell Epitope Prediction

The primary basis for T-cell epitope prediction is peptide–MHC binding prediction. A number of tools and methodologies for

predicting T-cell epitopes have been developed and are freely available online. We hereby provide a categorized review of
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Conducted Methodology Adopted Strengths/Limitations

learn the complementarity of the propensities used
in the first stage, which is heterogeneous but this
time on a small dataset of experimentally verified

epitopes.

Georgios A. et
al. 

A novel method, “SEPIa”, has been proposed here
to predict B-cell epitopes from protein sequences
and is sufficiently faster, and it can also be applied

to large-scale datasets. The model is the
combination of two classifiers, random forest and

naïve Bayes algorithm.

The average prediction accuracy of SEPIa is
limited. The AUC score is 0.65 in both 10-fold
cross-validation and on the independent test

dataset, which is higher than other approaches
tested on the same test dataset.

Gene Sher et
al. 

Authors proposed a novel, analytically trained
DREEP (Deep Ridge Regressed Epitope Predictor)
based on string kernels using a deep neural network

tailored to predict continuous epitopes.

The model was tested with input as long
sequences of proteins from datasets such as
AntiJen, Pellequer, and HIV. The results were

compared with epitope predictors such as
DMNLBE, LBtope, etc. Using the area under
the curve (AUC) metric, the model achieved
performance improvements over SARS by

13.7%, HIV by 8.9%, and Pellequer by 1.5%.

Wen Zhang et
al. 

Authors attempted to differentiate immunogenic
epitopes from non-immunogenic epitopes based
purely on their primary structure. To effectively

utilize various features, an ensemble method based
on a genetic algorithm was proposed.

The model was tested on two benchmark
datasets: IMMA2, PAAQD. The model was

compared with methods such as POPI, PAAQD,
and POPISK, which are considered state-of-

the-art in nature. The model performed better,
with an AUC score on IMMA2 of 0.846 and

0.829 on PAAQD.

Wei Zheng et
al. 

The authors used ensemble learning to improve the
prediction of BCEs. Their ensemble method

combined twelve SVMs. To handle imbalanced
datasets, resampling and AdaBoost methods were

used.

The proposed ensemble model achieved an
AUC score of 0.642–0.672 on the training

dataset with five-fold cross-validation and an
AUC score of 0.579–0.604 on the test dataset.

Jian Zhang et
al. 

To predict antigenic determinants, the authors
devised a cost-sensitive ensemble approach, and a

spatial clustering-based algorithm was used to
identify probable epitopes.

The model performed admirably in terms of
prediction. AUC scores of 0.721 and 0.703 were

obtained using leave-one-out cross-validation
(LOOCV) on two benchmark datasets: bound

and unbound.

Kavitha K V et
al. 

PCA was used to reduce dimensions and to filter out
the essential features; for prediction purposes, a

random forest algorithm was used.

Experimental results showed that the random
forest-based classifier had an improved
prediction accuracy rate as compared to

BCPred, AAP, etc.

Wen Zhang et
al. 

The authors used sequence-derived features and
developed an ensemble model based on random

forest to predict epitopes accurately.

The model was evaluated using the leave-one-
out cross-validation procedure, and an AUC

score of 0.687 and 0.651 on bound and
unbound datasets was obtained.

Ping Chen et
al. 

Authors reviewed various prediction models for
epitopes, such as models based on SVM, neural

network, random forest, etc., to defend
computational approaches in the prediction of

epitopes as in silico methods require a lot of effort
and time.

Apart from defending the computational
approaches, it was also concluded that there is
a limitation to current models as it is impossible

to devise an exact model without having
complete knowledge of the immune system,

and current models are simply best at
approximation.

Claus
Lundegaard et

al. 

Here, an artificial neural network was used. The
standard feedforward neural network with

backpropagation was employed to predict epitopes.
The dataset was retrieved from the SYFPEITHI

database.

The model efficiently and accurately predicts
MHC class I type peptides and outperforms the

existing methods.

[33]

[25]

[34]

[35]

[36]

[37]

[38]

[39]

[40]



Machine Learning in T- and B-Cell Epitope Prediction | Encyclopedia.pub

https://encyclopedia.pub/entry/19473 5/9

these tools based on the methods they use for prediction. The methods used are structure-based (SB), motif matrix (MM),

sequence motif (SM), quantitative affinity matrix (QAM), artificial neural network (ANN), support vector machine (SVM), the

quantitative structure–activity relationship model (QSAR), and combined (using QAM and ANN). For each tool, we have

mentioned the URL and which class of MHC binding prediction is supported (class I or II or both). These tools only assess a

peptide’s binding capability. It is still difficult for these methods to estimate deterministically whether a given peptide is an

epitope or not. CTLpred , one of the servers, works in this category; however, it is limited to peptides with a length of up to

9 mers only. However, the benefit of using ML algorithms for epitope prediction for the methods illustrated is that they address

two distinct problems: the differentiation of MHC binders from non-binders and the prediction of the binding affinity of a

peptide to MHC molecules. The first issue has been addressed by using classifiers such as ANNs, SVMs, decision trees (DT),

and Hidden Markov models (HMMs). All of these classifiers have been trained on data containing peptides that have or do not

have binding affinity to the MHC molecule. ML classifiers were developed on a dataset of peptides with an affinity to the MHC

molecule to solve the second problem, i.e., binding affinity prediction. Here, SVMs and ANNs have been used to first predict

affinity for MHC I and then for MHC II molecules. However, when using the MHC binding model to predict T-cell epitopes,

difficulty arises due to MHC polymorphism . To address this, pan MHC-specific models were created by training ANNs on

data containing MHC residues . Furthermore, it has been established that combining different approaches and providing a

consensus prediction improves peptide–MHC prediction .

3.2. Tools for B-Cell Epitope Prediction

The goal of predicting BCEs is to make it easier to identify a BCE for antigen replacement in an antibody production process.

BCEs are classified into two types: conformational and linear. As shown in Figure 2, linear BCEs are composed of

consecutive peptides and residues. Conformational ones, on the other hand, are formed of patches of solvent-exposed atoms

from non-sequential residues. As a result, conformational and linear BCEs are also known as discontinuous and continuous

BCEs.

Figure 2. Linear and conformational B-cell epitopes.

Regarding Linear BCEs, although being in the minority, their prediction has received more attention. A few existing

bioinformatics-based tools, such as PEOPLE  and PREDITOP  for BCE prediction, make use of propensity scales. The

tool PREDITOP  is based on a multi-parametric method using the accessibility, hydrophilicity, and flexibility properties of

amino acids. On the other hand, PEOPLE  is also based on these parameters but includes the assessment of β-turns.

However, in , by Blythe and Flower, it has been shown that the amino acid propensity scale is unreliable for predicting

epitope location.

The unreliability issue in predicting BCEs due to amino acid scales has been mitigated using ML algorithms. To differentiate

BCEs from non-epitopes, ML algorithms have been trained on feature vectors extracted from BCEs. A few methods based on

ML include ABCpred , BCPREDS , LBtope , SVMtrip , and BepiPred . It has been reported that methods based

on ML techniques outperform the techniques based on amino acid scales . Conformational BCEs constitute the majority

portion; however, their prediction is lagging behind that of linear types due to two main reasons. Firstly, their prediction

necessitates knowledge of the 3D protein structure. Only a limited percentage of proteins have 3D information . Secondly,

extracting conformational epitopes for specific antibody synthesis from a protein context is a difficult process that requires the

use of appropriate scaffolds for epitope grafting. Therefore, their prediction thus far is of less relevance for EBPV design.

4. Predicting SARS-CoV-2 Epitopes

Coronaviruses belong to the family Coronaviridae, the enveloped viruses having a large single-stranded RNA genome whose

length ranges from 26 to 32 kilobases . In , by Lineburg and colleagues, it has been found that, among 26 viral proteins

of SARS-CoV-2, a few proteins on its surface, such as the spike protein (S), are more variable, while others are more

conserved and internal, such as the nucleocapsid protein (N). It has been found that the spike protein (S) is responsible for

activating cytotoxic CD8+ T cells and hence is considered an ideal vaccine target.
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The infection caused by SARS-CoV-2 elicits both adaptive and innate arms of immunity . In general, antigen-presenting

cells recognize viruses. Once T-cell activation happens, CD4+ T cells mainly differentiate into effector cells, which produce

cytokines and chemokines; cytotoxic CD8+ T cells, on the other hand, are key players in the immune response to viral

infection, as they participate directly in viral clearance . It has been demonstrated that T cells, apart from targeting the

structural proteins of coronaviruses, are also responsible for lung immunopathological damage due to SARS-CoV and MERS-

CoV . Thus, in the case of SARS-CoV-2, the major focus has been on identifying viral T-cell epitopes presented on

human leukocyte antigens (HLA)  (Table 2).

Table 2. Existing ML methods used in SARS-CoV-2 epitope prediction.

A few techniques listed in Table 2 have “pan” as a suffix, which indicates an ability to predict the binding of HLA peptides for a

huge collection of the alleles inside a particular HLA type, including those not present in the training dataset . A few studies

have also used algorithms specific to HLA-I, namely Net_Chop  and NetCTL1.2 , where extra- and intracellular variables

responsible for the presentation of HLA antigens were integrated to improve the prediction accuracy of the binding of peptide

HLA. The methods NetCTL-1.2  and NetChop  have also been utilized in a few studies, where extra- and intracellular

variables have been integrated, which are responsible for presenting HLA antigens. It is essential to mention here that almost

all modern T-cell epitope prediction systems use ANNs. A few early ones (such as RANKPEP  and CTLPred ) used a

different ML approach, support vector machines (SVM). The spike proteins in the original virus bind to the ACE2 receptor on

human cells. It has been reported in  that the D614G mutation alters the genetic code of the spike protein of SARS-CoV-2,

where a change in a single amino acid takes place, and most of the COVID-19 vaccines are based on this spike protein. Due

to this mutation, the virus spreads faster and the spikes become more stable than those in the original virus. As a result, more

functional spikes are available to bind to ACE2 receptors, making the virus more infectious. Crooke et al.  developed a

computational model using various open-source algorithms and web-based tools to analyze the SARS-CoV-2 proteome so as

to identify antigenic and putative T-cell and B-cell epitopes as potential vaccine targets. After using a set of stringent selection

criteria to filter out the peptide epitopes, the study discovered 41 T-cell epitopes (5 HLA class I, 36 HLA class II) and six B-cell

epitopes that have the potential to serve as primary targets for epitope-based peptide vaccine development against SARS-

CoV-2.

5. Future Research Directions in T- and B-Cell Epitope Prediction

By now, it is clear that the key to designing an EBPV is the identification of BCEs and TCEs . Several studies have been

performed to predict BCEs and TCEs, as illustrated in Table 1. The methods used to predict SARS-CoV-2 epitopes are listed

in Table 2; again, these predict only the peptide-binding capacity. This is a limitation with these methods; instead of predicting

the binding capability of a peptide, predicting epitopes deterministically is desired. Because viruses continue to mutate, as

with SARS-CoV-2, existing vaccines may prove to be somewhat less effective against new variants. Either the vaccine’s

composition has to be changed or a new vaccine needs to be developed to protect against these variants . Time being the

critical factor, EBPVs can be a great solution. Based on the research conducted, EBPVs are highly recommended vaccines

and should be considered in the quest for the rapid development of protective vaccines. Below, we mention the future

research directions for epitope prediction as predicting epitopes is a sensitive task and needs due attention in order to

improve it.
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1. The majority of current state-of-the-art approaches estimate a peptide’s binding capability. These approaches struggle to

predict deterministically whether a given peptide is an epitope or not. CTLpred , one of the servers, operates in this

category; however, it is limited to peptides that are up to 9 mers in length. To circumvent the limitations of the previous

approaches, a direct method of predicting epitopes is sought. Furthermore, the technique should be capable of predicting

variable-length peptides with a length greater than 9 mers.

2. Current state-of-the-art ML epitope prediction approaches rely heavily on just a few classifiers, including ANNs, SVMs, and

Hidden Markov models (HMM) . There are other robust classifiers available that can be utilized to achieve even more

promising results, including decision trees (DT), random forest (RF), convolutional neural networks (CNNs), and AdaBoost

. In the literature surveyed, ANN-based models constitute the majority of the epitope prediction methods. However, relying

on ANNs only is not safe. ANNs suffer from a hardware dependency as they require processors with parallel processing

power in accordance with their structure . Because epitope prediction is such a delicate task, the ANN’s behavior is

occasionally unexplainable. When an ANN generates a probing solution, it does not explain why or how it was generated,

which reduces the trust in the network . However, to have high-performing models and robust models for applications such

as the healthcare domain, explainable ML can be explored, which is in its initial stage and remains an open issue . Gagniuc

et al. have proposed a spectral-based forecast model as an alternative to the classical ANN. In their experiment, the ANN

categorized the collection of data fairly but failed to reveal any useful information about the evolution of a subject over time. In

this regard, forecasts based on Markov chains or traditional statistical methodologies have produced more trustworthy

outcomes in the biology and medicine domains. The proposed novel method of analysis based on spectral forecasts

outperformed the classical ANNs .

3. Moreover, instead of relying on predictions by a single model, we can combine several robust classifiers, called an

ensemble model. Ensemble learning (EL) is a powerful technique for boosting the model accuracy by combining a number of

base classifiers . Such a technique has considerably better generalization capability than its individual counterparts.

Indeed, EL is appealing because it can elevate weak learners (also known as base classifiers), which are marginally better

than random guesses, to strong learners, which can make accurate forecasts . The base classifiers vote for a new data

instance, and, based on the majority of votes, a class label is returned. An ensemble model can be created by training

homogeneous base models on different subsets of the training set or heterogeneous base models using the same training

dataset. The main three types of ensembling techniques are bagging, boosting, and stacking. Multiple base learners

(homogenous) can be integrated in bagging using different sub-samples from the same dataset . The final prediction is

obtained by taking the average prediction from multiple base learners. In boosting, base learners are added sequentially, and

the predictions reported by previous learners are corrected. The final output is decided by taking the weighted average of all

the predictions . On the other hand, stacking involves fitting heterogeneous base learners on the same dataset  and

then using another learner to learn how to best combine all the predictions. Moreover, while dealing with complex data, such

as high-dimensional, imbalanced, noisy data, etc., traditional ML algorithms may fail to produce satisfactory results. The

reason for this is that, for these methods, it is difficult to capture various attributes and the underlying layout of the data.

Ensemble learning aims to combine data modeling, data fusion, and data mining into a cohesive framework  To conclude,

the main reasons for employing ensemble learning in epitope prediction are as follows:

Performance: An ensemble can outperform any single contributing model in terms of prediction and performance .

Robustness: An ensemble narrows the spread or dispersion of predictions and improves model robustness and reliability

.

4. In the literature surveyed, not all physicochemical properties of amino acids have been utilized to extract features from

peptide sequences. To have a robust epitope prediction system in place, additional physicochemical properties need to be

explored .

5. The existing ML-based methods for epitope prediction have been assessed using metrics such as accuracy and area under

the curve (AUC). However, other confusion matrix-based performance metrics such as Gini, specificity, sensitivity, F-score,

kappa, Matthews correlation coefficient (MCC), and precision, etc., can be utilized to analyze the performance of the model in

a better way.

6. Conclusions

Prediction of T- and B-cell epitopes can play a game-changing role in the EBPV design process, as well as in disease

diagnosis. In this study, a review of various existing studies for epitope prediction has been provided. Moreover, a review has

been provided for the state of-the-art ML-based tools that are available online and free to use for researchers working in
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vaccine design. The COVID-19 pandemic, caused by the SARS-VoV-2 virus, has resulted in a dramatic loss of human life

worldwide and poses an unprecedented challenge to public health, food systems, and the workplace . Accordingly, a

special emphasis has been placed on highlighting and analyzing various ML-based methods that have been proposed and

used for predicting epitopes of SARS-CoV-2 for EPBV design in order to contain the COVID-19 pandemic. However, it is

important to mention here that the application of epitope prediction tools/methods to SARS-CoV-2 presented in this review is

not satisfactorily developed, and only a few them have been applied for SARS-CoV-2 epitope prediction. Another reason to

place special emphasis on SARS-CoV-2 is that the EPBV design approach seems to be a promising alternative in order to

quickly design new vaccines against different variants of the virus as it continues to mutate . Based on the various state-of-

the-art ML methods discussed, future research directions for epitope prediction have been presented. From the literature

reviewed, it has been observed that focus has been given to peptide-binding capability prediction instead of deterministically

predicting whether a peptide is an epitope or not. In addition, the majority of the ML-based prediction models are based on a

single classifier. However, instead of relying on a single model, several robust classifiers can be combined into an ensemble

model in order to enhance the epitope prediction accuracy. To conclude, it is important to mention that the prediction of T-cell

epitopes is much more reliable and advanced as compared to the prediction of B-cell epitopes. Moreover, if epitopes are

predicted efficiently using computational approaches (ML-based methods), they can be used as futuristic vaccine candidates

with fewer side effects compared to conventional vaccine designs subjected to in vitro and in vivo scientific assessments. The

technology developed would help the broad scientific community working in vaccine development to save time in screening

the active epitope candidates against the inactive ones. In conclusion, it is relevant to provide a review of the existing ML-

based state-of-the-art methods for TCE and BCE prediction because EBPVs have significant potential and should be

considered in the quest for the rapid development of a protective vaccine against a pathogen, specifically for SARS-CoV-2, as

there is a strong likelihood that the virus will mutate further. This will also stimulate continuing research efforts for the EBPV

design process.
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