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Emerging machine learning (ML) technologies have the potential to significantly improve the research and treatment of

rare diseases, which constitute a vast set of diseases that affect a small proportion of the total population. Artificial

Intelligence (AI) algorithms can help to quickly identify patterns and associations that would be difficult or impossible for

human analysts to detect. Predictive modeling techniques, such as deep learning, have been used to forecast the

progression of rare diseases, enabling the development of more targeted treatments. Moreover, AI has also shown

promise in the field of drug development for rare diseases with the identification of subpopulations of patients who may be

most likely to respond to a particular drug.
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1. Diagnosis

Accurate diagnosis of rare diseases is an important task in patient triage, risk stratification, and targeted therapies. Rare

disease symptoms often appear unfamiliar and atypical to a clinician due to their infrequency, and the likelihood that

patients will not get an appropriate diagnosis and subsequent successful therapy is highest. The variability of rare

diseases also makes it difficult to identify corresponding diseases in a timely manner due to the lack of clinical diagnostic

procedures accessible.

A typical approach for the diagnosis of a rare disease includes a thorough medical history, physical examination, and

genetic testing, which may identify specific mutations that are associated with the disease. Additionally, imaging studies

such as X-rays, MRI, or CT scans may also be used. In this context, AI has the potential to play a significant but

challenging role, through the development of ML algorithms that can analyze large amounts of data to identify patterns

and markers that are characteristic of specific rare diseases. Moreover, AI-based diagnostic tools can also help to reduce

the time and costs associated with diagnosing rare diseases by identifying potential diagnoses more quickly and

accurately. Many ML techniques have been created to help in standardizing and sharing clinical and medical words

through diverse medical resources, in order to improve inter-operability in the field of rare diseases. However, ML

algorithms often require a significant number of training examples to achieve a good generalization performance, while

the number of relevant clinical records in this field is bounded by the size of the population.

New strategies have been used to compensate for the lack of training data for rare disease diagnosis. For example, in ,

based on the requirement of providers to document associated phenotypic information to support a diagnosis, researchers

hypothesize that patients’ phenotypic data stored in electronic medical records can be used to speed up disease

diagnosis. The preliminary results obtained demonstrated that the use of collaborative filtering with phenotypic information

can stratify patients with relatively similar rare diseases. In , the phenotype-based Rare Disease Auxiliary Diagnosis

system was developed, adopting both the traditional phenotypic similarity method and a new ML method to build four

diagnostic models to support the diagnosis of rare diseases. Each model provides, with high diagnostic precision, a list of

the top 10 candidate diseases as the prediction outcome. In another study  based on the fact that clinical symptoms in

children with pulmonary diseases are frequently non-specific, researchers developed and tested a questionnaire-based

and data mining-supported tool, providing diagnostic support for selected pulmonary diseases. Eight different classifiers

and an ensemble classifier were developed and trained to categorize any given new questionnaire and suggest a

diagnosis. All questionnaires of patients suffering from cystic fibrosis, asthma, primary ciliary dyskinesia, acute bronchitis,

and the healthy control group were correctly diagnosed by the fusion algorithm and exhibited good results in arriving at

diagnostic suggestions. Moreover, due to the very nature of rare diseases, the lack of historical data poses a great

challenge to ML-based approaches in accurately identifying rare diseases based on symptom descriptions.

More than one method has been applied to Huntington’s Disease (HD). This is a rare, inherited, neurodegenerative

disorder that causes the progressive breakdown of nerve cells in the brain and leads to the loss of cognitive, behavioral,

and physical abilities. It typically develops between the ages of 30 and 50, and the most visible symptom is chorea, which
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consists of involuntary movements of the upper and lower extremities, face, or body, and occurs in about 90% of patients.

There is currently no cure for HD, but treatments are available to manage symptoms and improve quality of life. Reliable

markers measuring disease progression in HD, before and after disease manifestation, may guide a therapy aimed at

slowing or halting disease progression. ML methods have been widely used for gait assessment through the estimation of

spatio-temporal parameters, demonstrating that the application of supervised classification methods is a valuable and

promising approach to the automatic detection of disease stages in HD. In , Zhang et al. investigate the potential of

classifying patient disease severity based on individual footstep pressure data using DL techniques. Using the Motor

Subscale of the Unified HD Rating Scale as the gold standard, the experiments performed showed that use of VGG16

and similar modules can achieve high classification accuracy. The objective of the work described in  was instead to

propose a validated SVM classifier that takes advantage of Hidden Markov Model-derived information for the classification

of different pathological gaits. Specifically, the presented methodology allowed for proper discrimination against gait data

from HD patients and healthy elderly controls using data from inertial measurement units placed at the shank and waist.

Furthermore, alterations in oculomotor performance are among the first observable physical alterations during the pre-

symptomatic stages of HD. In the pre-symptomatic and early symptomatic stages of HD, quantifiable assessments of

oculomotor function have been investigated as potential markers of disease state and development. In , Miranda et al.

reported the application of the SVM algorithm to oculomotor features pooled from a four-task psychophysical experiment.

They were able to automatically distinguish control participants from pre-symptomatic HD participants and HD patients

with high accuracy. Finally, quantitative electroencephalography (qEEG) may also provide a quantification method for

possible sub-cortical dysfunction occurring before, or concomitant with, motor or cognitive disturbances observed in HD.

In this pilot study , the authors constructed an automatic classifier, distinguishing healthy controls from HD gene carriers

using qEEG. Derived qEEG features that correlated with clinically known markers represented new potential biomarkers

of HD disease progression.

Starting from the assumption that bio-imaging technologies are increasingly impacting life sciences, and that sharing of

image data is required to enable innovative future research, there are several rare disease studies that use images as

input data. Parkinson’s disease (PD) and multiple system atrophy (MSA) are two neurodegenerative diseases that can

have overlapping clinical manifestations. MSA is a progressive rare neurodegenerative disorder characterized by a

combination of symptoms that affect both the autonomic nervous system and movement. This is caused by the

progressive degeneration of neurons in several parts of the brain and spinal cord. The objective of the studies described

in  were to assess the potential of SVM techniques to distinguish between PD and MSA patients at the single-patient

level. Measures of cerebellar-brain network and cerebellar-striatal connectivity and subcortical edge-wise tractography

data were used as predicting features in the articles respectively. Convolutional neural networks (CNN) were used in  to

distinguish each representative parkinsonian disorder using a single midsagittal MRI. CNN enabled accurate

discrimination among PD, progressive supranuclear palsy, MSA with predominant parkinsonian features, and normal

status, although the dataset was limited.

Amyotrophic lateral sclerosis (ALS) is also a neurodegenerative rare disorder that affects nerve cells in the brain and

spinal cord. The disease is progressive and leads to increasing disability, with patients eventually losing the ability to

speak, swallow, and breathe. There is no known cure for ALS, and treatment options are focused on managing symptoms

and prolonging survival. In , a deep CNN was developed for the classification of ALS patients and healthy individuals.

Based on the recent insight that regulatory regions harbor the majority of disease-associated variants, researchers

employed a two-step approach: promoter regions that are likely associated with ALS have been identified, and individuals

were classified based on their genotype in the selected genomic regions to identify potentially ALS-associated promoter

regions. The application of a new advanced neuroimaging method, which delineates the profile of tissue properties along

the corticospinal tract of patients with ALS using diffusion tensor imaging (DTI), was described in . RF was used to

assess the clinical utility of DTI in discriminating ALS from controls, with the potential to be of diagnostic utility in ALS.

Finally, in , the authors utilized independent component analysis to derive brain networks based on resting-state

functional magnetic resonance imaging and used those derived networks to build an ALS disease state classifier using

SVM.

More generally, SVM methods have been widely and differently applied in the field of rare diseases. Hypophosphatasia is

a rare genetic disease in which patients may have stress fractures, bone and joint pain, or premature tooth loss. In , the

authors developed several ML algorithms based on specific biomarkers of this disease, determining the best way to

diagnose this condition. SVM was the ML algorithm that provided the best predictive models in terms of classification.

Nguyen, et al.  proposed a measuring instrument based on ML to quantitatively assess impairment levels while

engaged in daily activity, for monitoring the progression of neurodegenerative conditions of Friedreich ataxia. Movement

patterns during a simulated eating task were captured and kinematic biomarkers were extracted that were consistent with

the frequently used clinical rating scales. SVM and other methods have been shown to accurately classify individuals with
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Friedreich ataxia and control subjects. The work in  aimed to assess the feasibility of a supervised ML algorithm for the

assisted diagnosis of patients with clinically diagnosed progressive supranuclear palsy (PSP), a rare neurodegenerative

disorder that shares similar clinical symptoms with PD. Morphological MRI of PD patients, PSP patients, and healthy

control subjects was used as the input of a supervised ML algorithm based on the combination of PCA as a feature

extraction technique and SVM as a classification algorithm. The authors in  characterized the 3D structure of the

cortical bone in high-resolution micro-CT images to analyze the micro-structural properties of bone in cases of

osteogenesis imperfecta (OI), a genetic disorder of connective tissues caused by an abnormality in the synthesis or

processing of collagen. Numerous features computed from the image were used in an SVM model to classify between

healthy and OI bone.

ANN and DL models have been shown to be highly effective in identifying and classifying diseases, and are becoming

increasingly popular in the medical field as a tool for accurate and efficient diagnosis. In both , NN models were

applied to eye photographs with the aim of identifying rare diseases. A hybrid learning-based neural network classifier

(HLNNC) was implemented in  to identify mucormycosis disease by comparing images of patients with and without

mucormycosis, a rare fungal infection caused by a group of molds. In , the discrimination ability of a deep CNN for

ultrawide-field pseudocolor imaging and ultrawide-field autofluorescence was demonstrated for the detection of retinitis

pigmentosa, a complex hereditary eye condition that causes cells in the light-sensitive retina to degenerate. Using the

proposed model, retinitis pigmentosa was distinguished from healthy eyes with high sensitivity and specificity on

ultrawide-field pseudocolor and ultrawide-field imaging. Automatic segmentation was instead implemented in . In the

first study, a deeply supervised 3D V-Net was used to automatically segment the arteriovenous malformations volume on

CT images, demonstrating its clinical feasibility by validating the shape, positional accuracy, and dose coverage of the

automatic volume. In the second study, a DL approach based on a holistically-nested network reliably segmented the lung

across the breathing cycle to accurately analyze the lung and respiratory muscle movement in Duchenne muscular

dystrophy. This is a severe form of childhood muscular dystrophy that affects 1 in 5000 boys, characterized by progressive

muscle degeneration caused by alterations in a protein that helps to keep muscle cells intact. In , researchers

constructed an ANN diagnostic model capable of differentiating primary immune thrombocytopenic purpura (pITP)

patients and established a potential pITP diagnosis platform. pITP is defined as isolated autoimmune thrombocytopenia

with idiopathic low platelet count, normal bone marrow, and unexplained causes of thrombocytopenia. In a recent study

described in , researchers studied multiple osteochondromas, an autosomal dominant disease characterized by the

formation of osteochondromas or exostoses.

Ensemble learning (EL) can help to improve the accuracy of rare disease diagnosis by combining the predictions of

multiple models and leveraging the strengths of each individual model. This can be particularly useful in the context of

rare diseases, where the number of cases is limited and the diagnostic criteria can be complex. Pulmonary arterial

hypertension (PAH) is a rare but progressive cardiopulmonary disease that leads to heart failure and premature death.

MicroRNAs are small, non-coding molecules of RNA, previously shown to be dysregulated in PAH, and contribute to the

disease process in animal models. In , EL techniques were used to select miRNAs able to distinguish PAH and healthy

controls. These circulating miRNAs and their target genes may provide insight into PAH pathogenesis and reveal novel

regulators of disease and putative drug targets. Primary sclerosing cholangitis (PSC) is a rare, chronic, cholestatic liver

disorder characterized by inflammation and fibrosis in the bile ducts, and it is known for its frequent concurrence with

inflammatory bowel disease. Dysbiosis of the gut microbiota in PSC was reported in several studies, but the

microbiological features of the salivary microbiota in PSC have not been established. In , Iwasawa et al. implemented a

random forest (RF) algorithm able to distinguish the salivary microbial communities of PSC patients, ulcerative colitis

patients, and healthy controls, indicating the potential of salivary microbiota as biomarkers for the non-invasive diagnosis

of PSC. In , an ML method based on RF was developed to automatically detect the early deterioration of photoreceptor

integrity caused by inherited retinal degenerative diseases. An application example is choroideremia, which is an X-linked

chorioretinal dystrophy characterized by progressive degeneration of the choroid. This tool can be used for choroidal flow

assessment in order to provide a more comprehensive description of disease progression. Finally, authors in  used RF

methodology in patients with three groups of rare myopathic conditions, which includes any disease that affects the

muscles that control voluntary movement, showing that the methodology was able to classify myotonic dystrophy type 1

and inflammatory myopathy.

2. Prognosis

The prognosis includes information about the likely or expected evolution, duration, and outcome of the condition. In most

cases, the possibility of a cure is also mentioned; however, most rare conditions are chronic and lifelong, so the goal is to
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manage the condition rather than cure it . The difficulty in making a predictive prognosis not only affects the physical

health of the patient, but also their mental health, leading to stress, anxiety, and depression .

AI can play a significant role in the prognosis of rare disorders by helping to fill in the gaps in data and experience . By

analyzing large amounts of data, such as electronic health records, genomic data, and imaging studies, ML algorithms

can identify patterns and predict outcomes for individuals with rare diseases, providing valuable insights that can inform

prognoses and guide decisions . Additionally, AI can be used to develop new prognostic tools, such as risk prediction

models, which can identify potential factors and early warning signs of disease progression, allowing for early intervention

and potentially improving patient outcomes .

The commonly used AI approaches in the prognosis phase are supervised learning with EL, ANN, and SVM as the most

widely used methods. Unsupervised methods, such as clustering, are used less frequently.

Two recent studies  used ML to identify new biomarkers that could be employed for prognostic purposes for

adrenocortical carcinoma (ACC), a rare and aggressive cancer that arises from the cells of the outer layer of the adrenal

gland. The prognosis for ACC is generally poor, with a 5-year survival rate of only about 10–20%, so early detection is

crucial for improving the chances of survival, as well as identifying new markers. In , the authors applied a simple and

unsupervised ML method called uniform manifold approximation and projection (UMAP) to mRNA expression data from

the TCGA-ACC study, the largest multi-platform study of ACC. UMAP is a dimension reduction technique, and it found two

distinct clusters that strongly correlated with patient prognosis. They then used an RF algorithm to identify the

transcriptional differences between the two clusters, finding 100 genes that could serve as new biomarkers or novel

targets for treatment. In , the authors performed a proteomic analysis of ACC at different stages and identified 7000

individual proteins. They selected 117 differentially expressed proteins (DEPs) using three feature selection algorithms

(ReliefF, infoGain, and ANOVA) and conducted a survival analysis to assess the effect of the identified DEPs on patient

survival. They were able to identify five new candidate protein biomarkers as prognostic factors, which can help in defining

new therapeutic targets. Both studies highlight the importance of using ML with multi-omic data to better understand the

biology of ACCs and to identify biomarkers for the disease.

The study of alkaptonuria is an example of how multiple ML techniques have been applied to an ultra-rare disease.

Alkaptonuria (AKU) is an autosomal, recessive, and metabolic disorder caused by a defect in the enzyme homogentisic

acid oxidase. As a result, homogentisic acid accumulates in the body and causes the formation of ochronotic pigments,

and this can lead to various symptoms such as arthritis, amyloidosis, and kidney stones. Due to the rarity of the disease

and the lack of a standardized method of assessment, studying AKU can be challenging. A recent study  has

implemented a digital platform, ApreciseKUre, which is designed to collect, integrate, and analyze data for patients with

AKU. The platform includes a wide range of data, including genetic, biochemical, histopathological, clinical, therapeutic

resources, and quality of life (QoL) scores, which can be shared among researchers and clinicians to create a precision

medicine ecosystem. The authors describe how ML applications were used to analyze and interpret the data in

ApreciseKUre to achieve patient stratification, and tailor care and treatment to specific subgroups of patients. Two specific

studies show the potential of ML in the context of AKU data. The first study  aimed to predict QoL scores based on

patient’s clinical data using the XGBoost algorithm and a k-NN algorithm.

ALS is another rare and very serious disease that has been studied with AI methods. In , the authors used

pharmacometabolomics approaches and ML algorithms to identify metabolic changes in patients with ALS and the effects

of two different treatments: riluzole and olesoxime. They applied multivariate statistical techniques such as partial least

squares regression, orthogonal partial least squares discriminant analysis, and a novel algorithm called Biosigner. This

algorithm, which is based on bootstrapping and different methods like RF and SVM, was found to have better predictive

power than other approaches. The study found that certain lipids and amino acids were differentially expressed in the two

treatment groups, and that these changes might be linked to changes in energy metabolism and glutamate metabolism,

which are known to be important in ALS pathophysiology. In , Huang et al. present a novel non-parametric survival

analysis method called GuanRank that aims to improve the reliability and robustness of survival predictions in clinical

trials. This method is based on the Kaplan-Meier estimator and transforms the problem into a general regression problem

that can be solved by ML regression algorithms such as Lasso regression, Gaussian process regression, and RF. The

method was validated on the PRO-ACT database, a large de-identified dataset of patients in ALS clinical trials, and it

demonstrated superior performance over the traditional survival models such as the Cox proportional hazard model.

Gordon & Lerner  also used data from the PRO-ACT database to predict the state of ALS patients. They used RF,

XGBoost, cumulative link models, ordinal decision trees, and cumulative probability trees as the prediction models and

BM for knowledge representation. They found that ordinal classification models improved predictive performance and

identified variables that were not previously known to be related to ALS, such as creatinine, CK, and phosphorus. In
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addition, data related to language and MRI images of ALS patients can be used to better understand the progression of

the disease. Wang et al.  aimed to develop an automated assessment tool for speech impairment in ALS to improve the

early detection and monitoring of bulbar dysfunction in ALS patients. They proposed the use of ML to detect abnormal

speech patterns in ALS from both acoustic and articulatory samples and to help in the assessment of disease

progression. The speech data is in the form of features extracted from speech recordings, which can be done using open-

source algorithms such as openSMILE. Gradient boosting was used as the feature selection technique and SVM was

used to predict intelligible speaking rate from speech acoustic and articulatory samples. In , the authors aimed to use

DL to predict the survival time of ALS patients based on clinical characteristics and advanced MRI metrics. They collected

high-resolution diffusion-weighted and T1-weighted images from 135 ALS patients at their first visit, and then monitored

each patient’s survival time until death. Then, they used DL to create four different networks: one based on clinical data,

one based on structural connectivity MRI data, one based on morphology MRI data, and one based on a combination of

the three sources of information. The results showed that MRI data alone can provide valuable predictions of survival time

and that combining clinical characteristics and MRI data into a DL approach can further improve predictions about a

patient’s survival time. These studies on ALS highlight the importance of combining multiple sources of data such as

clinical characteristics and MRI metrics to improve the accuracy of predictions.

As already seen for diagnosis, AI can be of great help in the prognostic phase of HD as well. Lauraitis et al.  proposed

a hybrid model that uses artificial ANN and a Fuzzy Logic expert system (FLS) to predict, through finger-tapping tests, the

deterioration of reaction state in individuals with neurological movement disorders such as hand tremors and non-

voluntary movements. This model is composed of four sub-models (dataset formation, ANN prediction, FLS, and a

decision module for determining the person’s condition) and was tested on a dataset of 3032 records from 20 test

subjects. Results show that the feed-forward backpropagation neural network model achieved the best performance

results. The authors plan to validate the proposed system using a larger dataset including data from PD and Alzheimer’s

patients, as well as using more sophisticated finger-tapping features and comparing ANN results with those of SVM

regression. In , they present a new approach that uses a combination of brain function and structure imaging data to

identify whether a person with HD will receive a clinical diagnosis within 5 years, known as premanifest HD (preHD). The

researchers used an SVM to classify individuals with preHD from controls. The input data were resting-state functional

connectivity, subcortical gray matter volume, and cortical thickness. The SVM was trained using a linear kernel and a

weighted cost function to account for class imbalances, and then the models were evaluated using leave-one-out

validation and permutation testing. They also applied independent validation to test the generalizability of the findings.

Asadi et al.  also wanted to predict the progression of a disease, i.e., cerebral arteriovenous malformations (cAVMs).

They noticed that the lack of large observational studies on the long-term outcome of unruptured cAVMs has made it

difficult to determine the best course of action. cAVMs are rare, abnormal connections between the arteries and veins in

the brain that typically form before birth. They can vary in size and location, and may cause a rupture, leading to

hemorrhage and reduced blood flow to the brain. Since cAVMs can present symptoms at any age, the goal is to identify

factors that can be used to predict hemorrhagic risk and to develop a risk stratification model that can be used to guide

treatment decisions. They used ANN and SVM to predict the outcome of cAVMs post-endovascular treatment with

relatively high accuracy and precision. The ANN was found to be the strongest predictor of fatal outcome, with the

presence or absence of nidal fistulae having the greatest predictive power. The study also found out that the classical

regression model had mediocre accuracy in predicting the outcome of mortality, with the type of treatment-related

complication being the most important predictor. In , the authors developed an ML algorithm based on DTI to predict

the clinical severity of PSP. The algorithm was trained on data from a cohort of PSP patients and was found to be

accurate in predicting the severity of the disease as measured by various clinical scales. Moreover, the algorithm

identified regions of the brain related to motor function, such as the thalamus, and regions related to psychomotor

interactions, such as the parahippocampus gyrus, that are associated with the severity of the disease.

Other examples of where SVMs have been successfully applied include the works of Zhutovsky et al.  and An et al. .

In , they wanted to determine the prognostic accuracy of clinical and structural MRI data of patients with a behavioral

variant of frontotemporal dementia (bvFTD) presenting late-onset behavioral changes. This disorder presents with

behavioral and cognitive symptoms that overlap with other neurological and psychiatric disorders, so the authors suggest

that predictive biomarkers could facilitate early detection. They used data from 73 patients, divided into three groups

based on 2-year follow-up diagnosis: probable/definite bvFTD, neurological, and psychiatric. They then used SVM

classifiers to perform classification tasks and evaluated performance using cross-validation. They found that the

combination of clinical and voxel-wise whole brain data showed the best performance overall, and concluded that the

results show the potential for automated early confirmation of bvFTD using ML analysis of clinical and neuroimaging data

in a diverse and clinically relevant sample of patients. In , the authors used the SVM model to study mutations that

cause Diamond-Blackfan anemia (DBA), a rare hereditary disorder characterized by failure of erythropoiesis. They first
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conducted a comprehensive study on the structural basis of human RPS19 mutations that occur in DBA, based on its 3D

structures, and then used this knowledge to train an SVM model to predict the pathogenicity of all possible missense

mutations of RPS19. They used 29 DBA mutations (positive samples) and 30 neutral ones (negative samples) as training

data, and extracted 8 features to be used for each mutation, such as interaction with rRNA, structural stability, and

conservation. After five-fold cross-validation, the best hyperparameters were identified and the SVM model was able to

predict 26 of the 29 DBA mutations correctly, with a significantly reduced false-positive rate compared to other prediction

tools.

BRF was used to overcome difficulties in obtaining validation datasets because it does not overfit to training data, and it

was used to further define and validate the pathological immune cell profile of the disease. sPLS-DA was used as a

secondary validation method to rank and validate the immunological variables by their distribution in patients with jSLE

and healthy controls. The analyses identified 8 immune cell subtypes that were consistently correlated with jSLE patients,

compared with healthy controls. Lastly, in the works of Chou & Ghimire , they applied RF algorithms to identify

prognostic factors in pediatric myocarditis patients. In their first study , they used an RF algorithm on 500 factors from a

publicly available pediatric hospitalization database (Kids’ Inpatient Database) to identify mortality risk factors, and

validated these factors using linear and binomial regression models. They also used negative binomial regression models

to study the association between the length of hospitalization and risk factors. The goal of the second study  was to

develop a model to predict in-hospital mortality among patients hospitalized for pediatric myocarditis, since traditional

logistic regression models have low sensitivity. A total of 14 variables were included in model development and an RF

algorithm was applied because of the nature of the predictors, which are all two-level categorical variables. Based on the

importance scores of the risk factors, the top 5 variables were selected as MV, ECMO use, cardiac arrest, ventricular

fibrillation, and AKI.

3. Treatment

There is an urgent need to identify novel treatment options for rare diseases, which is a difficult challenge due to the lack

of essential data including drug molecules, genes, and protein structure information. The speed at which new biomedical

knowledge is being discovered makes it particularly challenging to connect disease mechanisms to drug action. Almost

95% of rare diseases do not have FDA-approved drug treatment and the increasing number of rare diagnoses puts

pressure on scientists and clinicians to characterize these conditions and match patients with appropriate treatments .

As biomedical discoveries continue to generate big amounts of data, an opportunity emerges for AI to help in translating

biomedical knowledge into a format that can be used to identify therapeutic strategies for patients. Recently, The Hugh

Kaul Precision Medicine Institute created mediKanren , an AI platform based on knowledge graphs that uses the

mechanistic insight of genetic disorders to identify therapeutic strategies, enabling an efficient way to link all relevant

literature and databases. The method was tested by analyzing genetic data and publications of two rare disorders related

to missense variants in the TMLHE and RHOBTB2 genes, revealing molecular mechanisms and pathways which have

provided new therapeutic targets.

Currently, AI methods for treatment belong mostly to supervised learning, which uses labeled datasets to train algorithms

able to classify or predict outcomes accurately. In , Bakkar et al. implemented the IBM Watson   method to screen

RNA-binding proteins (RBPs) in the genome and identify additional RBPs involved in ALS. Numerous RBPs have been

shown to be altered in ALS, making them a contributing factor in disease pathobiology. IBM Watson extracts domain-

specific text features from published literature to identify new connections between entities of interest. From these

annotated documents, Watson created a semantic model of the set of RBPs with known mutations that cause ALS, and

then applied that model to a candidate set of all other RBPs to cluster all the candidates by similarity to the known set

using a graph diffusion algorithm. Gated Recurrent Unit Cooperation-Attention-Network (GCAN) was used in  to predict

drugs for rare diseases, with particular attention to Gaucher disease, a rare metabolic disorder in which deficiency of the

enzyme glucocerebrosidase results in the accumulation of toxic quantities of certain lipids. Two heterogeneous networks

were built for information enhancement; one network contains the father nodes of the rare disease, while the other

network contains information on the son nodes. A biased random walk approach was used to collect data from the father

and son nodes, where nodes were linked in a hierarchical relationship with two hop distances. The effectiveness of two

Gaucher disease drugs predicted by GCAN has been established. In , authors showed interest in sialidosis, an ultra-

rare lysosomal storage disease characterized by an excessive accumulation of glycoprotein-derived oligosaccharides. J.

Klein et al. applied the so-called Assay Central software  to build Bayesian ML models to screen compounds in silico

before in vitro testing. This approach has been applied to identify new compounds that can act as a potential disease

modulator in the treatment of sialidosis. In , the authors used an RF classifier for the prediction of cell-penetrating

peptides, which can facilitate the intracellular delivery of large therapeutically-relevant molecules. The goal was to deliver
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phosphorodiamidate morpholino oligonucleotides, a type of antisense therapy recently approved by the FDA for the

treatment of DMD. Multi-output regression ML methodologies were implemented in  to predict the potential effect of

external proteins on the signaling circuits that trigger Fanconi anemia-related cell functionalities. This rare condition

causes genomic instability and a range of clinical features, including developmental abnormalities in major organ systems

and a high predisposition to cancer . Thanks to these models, over 20 potential therapeutic targets were detected. In

the last study , Spiga et al. developed an RF model that performs a prediction of the QoL scores based on data

deposited in ApreciseKUre. Predicted QoL scores were then correlated with the drugs taken by AKU patients, revealing

that drugs typically used to treat AKU patients were effective in reducing pain, but some common drugs not related to

specific AKU symptoms also showed a correlation with some QoL scores.
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