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Robust evidence suggests that humans explore their environment using a combination of topological landmarks

and coarse-grained path integration. This approach relies on identifiable environmental features (topological

landmarks) in tandem with estimations of distance and direction (coarse-grained path integration) to construct

cognitive maps of the surroundings. This cognitive map is believed to exhibit a hierarchical structure, allowing

efficient planning when solving complex navigation tasks.
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1. Introduction

The development of autonomous systems that can navigate in their environment is a crucial step towards building

intelligent agents that can interact with the real world. Just as animals possess the ability to navigate their

surroundings, developing navigation skills in artificial agents has been a topic of great interest in the field of

robotics and artificial intelligence . This has led to the exploration of various approaches, including taking

inspiration from animal navigation strategies (e.g., building cognitive maps ), as well as state-of-the-art

techniques using neural networks . However, despite significant advancements, there are still limitations in both

non-neural-network- and neural-network-based navigation approaches .

In the animal kingdom, cognitive mapping plays a crucial role in navigation. Cognitive maps allow animals to

understand the spatial layout of their surroundings , remember key locations, solve ambiguities from context

, and plan efficient routes . By leveraging cognitive mapping strategies, animals can successfully navigate

complex environments, adapt to changes, and return to previously visited places.

In the field of robotics, traditional approaches have been explored to develop navigation systems. These

approaches often rely on explicit mapping and planning techniques, such as grid-based  and/or topological

maps , to guide agent movement. While these methods have shown some success, they suffer from

limitations in handling complex spatial relationships and dynamic environments as well as scalability issues as the

environment grows larger .

To overcome the limitations of these non-neural network approaches, recent advancements have focused on

utilising neural networks for navigation . Neural-network-based models, trained on large datasets, have

shown promise in learning navigational policies directly from raw sensory input. These models can capture
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complex spatial relationships and make decisions based on learned representations. However, the current neural-

network-based navigation approaches also face challenges, including the need for extensive training data,

limitations in generalisation to unseen environments, distinguishing aliased areas, and the difficulty of handling

dynamic and changing environments .

Active inference is a framework allowing agents to actively gather information through perception, select and

execute actions in their environment, and learn from accumulated experiences . World models, within this

framework, form internal representations of the world. Agents endowed with a world model and engaged in active

exploration continually update their internal understanding of the environment, empowering them to make well-

informed decisions and predictions . This principled approach enables continuous belief updates and active

information gathering, facilitating effective navigation .

Noting that biological agents are building hierarchically structured models, researchers construct multi-level world

models as hierarchical active inference. Hierarchical active inference warrants agents to utilise layers of world

models, facilitating a higher level of spatial abstraction and temporal coarse-graining. It enables learning complex

relationships in the environment and allows more efficient decision-making processes and robust navigation

capabilities . By incorporating hierarchical structures into active inference-based navigation systems, agents can

effectively handle complex environments and perform tasks with greater adaptability .

2. Spatial and Temporal Hierarchy for Autonomous
Navigation

Navigating complex environments is a fundamental challenge for both humans and artificial agents. To solve

navigation, traditional approaches often address simultaneous localisation and mapping (SLAM) by building a

metric (grid) map  and/or topological map of the environment . Although there is progress in this area,

Placed et al.  state that active SLAM may still fail to be fully autonomous in complex environments. The current

approaches are also still lacking in distinct capabilities important for navigation, such as predicting the uncertainty

over robot location, abstracting over features of the environment (e.g., having a semantic map instead of a precise

3D map), and reasoning in dynamic, changing spaces. The recent studies have explored the adoption of machine

learning techniques to add autonomy and adaptive skills in order to learn how to handle new scenarios in real-

world situations. Reinforcement learning (RL) typically relies on rewards to stimulate agents to navigate and

explore. In contrast, the model breaks away from this convention, as it does not necessitate the explicit definition of

a reward during agent training. Moreover, despite the success of recent machine learning, these techniques

typically require a considerable amount of training data to build accurate environment models. This training data

can be obtained from simulation ; provided by humans (either by labelling, as in the works in  or by

demonstration, as in ); or by gathering data in an experimental setting . These methods all aim to

predict the consequences of actions in the environment but typically generalise poorly across environments. As

such, they require considerable human intervention when deployed in new settings . The aim is to reduce both

the human intervention and the quantity of data required for training by simultaneously familiarising the agent with

the structure and dynamics found in its environment.
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When designing an autonomous adaptable system, nature is a source of inspiration. Tolman’s cognitive map theory

 proposes that brains build a unified representation of the spatial environment to support memory and guide

future actions. More recent studies postulate that humans create mental representations of spatial layouts to

navigate , integrating routes and landmarks into cognitive maps . Additionally, the research into neural

mechanisms suggests that spatial memory is constructed in map-like representations fragmented into sub-maps

with local reference frames ; meanwhile, hierarchical planning is processed in the human brain during navigation

tasks . The studies of Balaguer et al.  and Tomov et al.  show that hierarchical representations are essential

for efficient planning for solving navigation tasks. Hierarchies provide a structured approach for agents to learn

complex environments, breaking down planning into manageable levels of abstraction and enhancing navigation

capabilities, both spatially (sub-maps) and temporally (time-scales). Thus, the model incorporates these elements

as the foundation of its operation.

The concept of hierarchical models has gained interest in navigation research . Hierarchical structures enable

agents to learn complex relationships within the environment, leading to more efficient decision-making and

enhancing adaptability in dynamic scenarios. There are two main types of hierarchy, both considered in the work:

temporal—planning over a sequence of timesteps —and spatial—planning over structures .

In order to navigate without teaching the agent how to do so, researchers use the principled approach of active

inference (AIF), a framework combining perception, action, and learning. It is a promising avenue for autonomous

navigation . By actively exploring the environment and formulating beliefs, agents can make informed decisions.

Within this framework, world models play a pivotal role in creating internal representations of the environment and

facilitating decision-making processes. A few models have proposed combining AIF and hierarchical models for

navigation. Safron et al.  proposes a hierarchical model composed of two layers of complexity to learn the

structure of the environment. The lowest level infers the state of each step while the higher level represents

locations, created in a more coarse manner. Large, complex, aliased, and/or dynamic environments are challenges

to this model. Nozari et al.  construct a hierarchical system by using a dynamic Bayesian network (DBN) over a

naive and an expert agent, in which the naive agent learns temporal relationships, with the highest level capturing

semantic information about the environment and low-level distributions capturing rough sensory information with

their respective evolution through time. This system, however, requires expert data to be trained by imitation

learning, which limits the performance of the model to that of the expert.
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