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The general approach of studying antifungal combinations is (i) to choose an experimental technique, (ii) to obtain raw

numerical data, (iii) to analyze these data either graphically or numerically; (iv) to interpret the results, and (v) to conclude

on the mode of interaction: synergy, indifference (no interaction), or antagonism.
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1. Introduction

Fungal infections are serious pathologies that, despite adequate treatment, have high mortality rates . In addition,

besides natural resistance in some species, acquired resistance to antifungals is increasing . Therefore, new

therapeutic alternatives are needed. At present, only a few antifungals belonging to a limited number of antifungal classes

with different mechanisms of action are on the market . Despite the urgent need for new antifungals and antifungal

classes , a promising therapeutic strategy would be to use antifungals in combination. Indeed, one of the main

advantages of combining antifungals is to overcome resistance . Moreover, antifungal combination can increase the

efficacy of the combined molecules yielding to synergy. Combination therapy can also reduce toxicity by decreasing

antifungal dosages, and improve the pharmacokinetics of one or both molecules . Antifungal combinations are already

used in clinical practice, such as 5-flucytosine combined with amphotericin B as first-line treatment for cryptococcal

meningitis . Moreover, it is also important to know if a combination exhibits antagonism.

Regarding the general approach of studying antifungal combinations, several steps are needed to perform and interpret

antifungal combination tests (Figure 1). The first step is to choose an experimental technique: a liquid dilution method

(e.g., checkerboard), a method of agar diffusion (e.g., gradient concentration strips such as Etest), or a study of fungicidal

effect (e.g., time-kill). Using these methods, raw numerical data are obtained: minimal inhibitory concentrations (MIC),

inhibition diameters, or number of colony-forming units (CFU) over time. The MIC data for example, are then analyzed,

either using a graphical method (surface analysis), or by calculation of the inhibitory fractional concentration index (FIC

index), and interpreted according to consensual thresholds or predetermined criteria. Finally, based on the results, a mode

of interaction that is synergy, indifference (no interaction), or antagonism can be concluded. Currently, none of these steps

are standardized, and therefore a large number of variables can influence the final results.

Figure 1.  Summary of steps needed to perform and interpret antifungal combination tests. MIC, minimal inhibitory

concentration; MFC, minimal fungicidal concentration; CFU, colony forming unit; FIC, fractional inhibitory concentration;

RSA, response-surface analysis; SYN, synergy; ANT, antagonism.

2. In Vitro Techniques

To study antifungal combinations, several experimental techniques are possible. Each method has advantages, but also

disadvantages (Table 1).

Table 1. Summary of the advantages and disadvantages of the different methods used to study antifungal combinations in

vitro.
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Techniques Advantages Disadvantages

Checkerboard method

Quantitative Discontinuous gradient of antifungal
concentration

Automated reading of results Lack of standardization in
interpretation of results

Agar diffusion assay (disks
or gradient strips)

Continuous gradient of antifungal
concentration Qualitative for disks

Possible use of commercialized
systems (gradient strips)

Difficult to assess at which
concentrations interaction occurs

Time-kill curves

Quantitative Lack of standardization

Fungicidal exploration and rate of
killing

Only a few concentrations studied at
the same time

2.1. Liquid Microdilution Technique: Checkerboard

The checkerboard method is generally based on the standardized EUCAST  or CLSI  broth micro-dilution techniques

and performed in 96-well microplates . Initially, each drug is diluted in series, usually using a dilution factor of two.

These solutions are added to the culture medium (Roswell Park Memorial Institute Medium, RPMI), which is then

distributed in a 96-well microplate (Figure 2). After preparation of the microplates, each well is inoculated with the fungal

inoculum (yeast cells or conidia), and microplates are then incubated. To be able to interpret the results correctly, sufficient

two-fold dilutions below and above the MIC have to be included for each antifungal. Reading can be performed either

visually or spectrophotometrically. Nevertheless, for a more objective MIC determination and possible automation, the

spectrophotometric method should be preferred . After reading of the microplates, the quantitative data can be

analyzed in different ways.

Figure 2. Example of preparation and inoculation of microplates using the checkerboard method based on the EUCAST

methodology for antifungal susceptibility testing.

The checkerboard is the most often used in vitro technique , and is therefore considered to be the “reference”

method, even though there is currently no consensus regarding the reference technique to be used for assessing

antifungal combinations. Nevertheless, this technique has some drawbacks, in particular, the range of concentrations

tested is discontinuous and the dilutions are performed in a geometric manner. This means that only certain combinations

of concentrations can be evaluated on the microplate, and the error in determining the MICs is not the same over the

entire concentration range. The checkerboard technique can also be used to test triple combinations . It has been used
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(i)

(ii)

to test triple combinations in the field of antivirals (e.g., against HIV) , antibiotics (e.g., against Mycobacteriacae and

Enterobacteriacae) , and antifungal agents against Aspergillus spp. , Cryptococcus neoformans  , Candida
albicans  , Mucorales , and Scedosporium spp. .

2.2. Agar-Medium Diffusion Techniques

Agar-medium diffusion techniques are widely used to determine antifungal susceptibilities. These methods can be

adapted in different ways to study antifungal combinations.

2.2.1. Disk Diffusion Method

Disks impregnated with one of the two antifungal agents are placed face to face on an agar previously inoculated with the

strain to be studied. The optimal distance between the discs to visualize the interaction should be determined in

preliminary experiments. After growth of the microorganism, growth inhibition zones are obtained around each of the

disks. In the zone were the diffusion of both antifungals is overlapping, special inhibition zones can be recognized.

Depending on the growth characteristic of the strain on these zones, the interaction can be concluded.

Another technique is to use a disk impregnated with an antifungal agent, while the second antifungal is incorporated into

the agar at a sub-inhibitory concentration. The inhibition zone obtained is compared to that of the control, i.e., agar without

an antifungal agent. Compared to the control agar, an increase or decrease of the inhibition diameter around the disk will

be obtained in cases of synergy or antagonism, respectively. Another way to detect antagonism is to incorporate the

antifungal in the agar at a concentration higher than the MIC of the strain. In case of antagonism, growth of the

microorganism will occur only around the disk .

This method has been used to evaluate antifungal combinations or combinations of antifungals with non-antifungal drugs

against Candida spp. , Cryptococcus spp. , and dermatophytes .

2.2.2. Right Angle Scattering Method

One of the common methods to assess interactions of antimicrobial drugs is the right angle scattering method . It

consists of placing two drug-impregnated paper strips at right angles on an agar plate. Depending on the growth

characteristics of the microorganism in the area, where drug diffusion into the agar is overlapping, either synergy,

indifference, or antagonism can be concluded. The technique is easy and fast to perform, but has only seldom been used

for assessing antifungal combinations . The fact that the technique is a diffusion method makes it possible to obtain a

continuous gradient of the concentrations of the antifungals. However, the method has also several drawbacks. It is only

qualitative, and the interpretation remains subjective as it depends on the growth of the microorganism on only a few

millimeter-wide overlapping zone of the antifungals, which may vary between the experiments . Additionally, the

choice of concentrations of the antifungals on the paper strips makes preliminary experiments necessary.

2.2.3. Gradient Concentration Strip (Etest) method

Gradient concentration strips allow researchers to measure the MICs of antifungals. Strips are impregnated with

concentration gradients of the molecules . Even though this is not the reference method for antifungal susceptibility

testing, it is a simple test to determine MICs. Gradient concentration strips can also be used to test interactions between

drugs . The endpoints used for MIC determination (complete or partial inhibition) for antifungal combination are the

same as those used when drugs are tested alone. Due to the existence of registered trademarks (e.g., Etest), the

reproducibility of the technique is good. Several methods are used to assess antifungal combinations.

The first method is used when strips are commercially available for both antifungals. After determination of the MICs

alone, the MIC in combination can be evaluated in three different ways.

The cross protocol

The strips of antifungal A and antifungal B are crossed at a 90° angle at the position of their MICs alone. This protocol has

been used to test antibiotic combinations against gram-negative and gram-positive bacteria , but also to test

voriconazole combined with either caspofungin or amphotericin B against  Candida  spp. , and to test various

combinations against Candida glabrata  .

The fixed ratio protocol

The strip of antifungal A is placed on the agar and is replaced after diffusion of the antifungal into the agar by the strip of

antifungal B on exactly the same position as the first strip (Figure 3) . This method has been used to test

combinations against C. glabrata  , C. neoformans  , and Aspergillus spp. .
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(iii)

Figure 3.  Gradient concentration strip method (Etest) for the determination of antifungal interactions: the fixed ratio

protocol.

The MIC/MIC ratio protocol

The strip of antifungal A is applied onto the agar and is removed after 1 hour. After vertical transposition, the strip of

antifungal B is applied on the agar surface, so the MIC of antifungal A meets the MIC of antifungal B, or a fraction of the

MIC. Polymyxin B combined with fluconazole or caspofungin has been evaluated against C. glabrata by this method and

showed synergistic interactions . Synergy has also been found for combinations of doxycycline or tigecycline with

fluconazole against C. glabrata  .

The second method is used when no gradient strips are available for one of the two drugs. The MIC of antifungal A is

determined by a gradient strip alone, and the MIC in combination after drug B has been incorporated in the agar at a fixed

concentration . A control plate with drug B alone is generally added to ensure that drug B is at a

sub-inhibitory concentration. This method has been used to assess combinations of antifungals or combinations of

antifungals with non-antifungal drugs against Candida spp. , Aspergillus spp. , and Mucorales .

2.3. Time-Kill Curves

Unlike the previous techniques which measure the inhibition of growth after a predetermined time point, time-kill curves

measure the kinetics of fungicidal activity . Fungal killing is calculated by measuring the colony forming units (CFU) at

predetermined time points. The CFU are determined from tubes containing RPMI medium with the antifungals either alone

or in combination. The concentrations of the antifungals are either fractions or multiples of the MICs. To interpret the

results of this technique, it is necessary to compare the fungicidal activity of the combination to that obtained by the most

active antifungal alone . This method has been used to evaluate antifungal combinations or combinations of

antifungals with non-antifungal drugs against Candida spp. 

,  Cryptococcus  spp. , and  Aspergillus  spp. .

Synergy or antagonism are defined by a decrease or an increase of ≥ 2 log  CFU/mL of the combination compared to the

most active drug . The main advantage of this quantitative technique is the possibility to explore the fungicidal activity

of combinations. The disadvantages are that technical parameters and the interpretation of the results are not

standardized.

2.4. Analysis of Results and Interpretation

Several methods can be used to assess the combined effect of drugs that are tested in combination experiments (Figure

1).
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There are several theoretical approaches to model the interaction between pharmacologically active molecules. In the

field of antifungal drugs, two theories are mainly used.

The first is based on the Loewe additivity model. The model is based on the hypothesis that a drug does not interact with

itself, which means the combination of a drug with itself, gives, by definition, an indifferent interaction. It is a dose-effect

based strategy, meaning that concentrations that give a certain effect are compared . Several methods can be applied

to analyze the interactions of two drugs based on the Loewe theory, for example, intuitive graphical analysis such as the

isobologram  or its algebraic counterpart based on the calculation of the FIC index . Other approaches can also be

used, such as the Greco model , the median-effect approach of Chou and Talabay , or response surface approaches

.

The second is based on the Bliss independence model. The model is based on the hypothesis that two drugs act

independently of each other. No interaction is obtained when the effect of the combination is equal to the product of the

effects of the drugs alone. This approach compares the effects, instead of the concentrations, of drugs alone, or in

combination. If the observed effect is better or worse than the expected indifferent interaction, the combination is defined

as synergistic or antagonistic, respectively. Several methods of analysis, such as the Prichard model , have been

developed based on the Bliss theory. Response-surface analysis can also be implemented based on the Bliss

independence model . Besides the Bliss independence model, other effect-based strategies can be used. These

include the combination sub-thresholding, the highest single agent, and the response additivity approach .

2.4.1. FIC Index

The fractional inhibitory concentration index, or FIC index, can be used to determine the effect of a tested combination. To

determine the FIC index, the fractional inhibitory concentrations (FIC) of both drugs are added. The FIC is calculated by

division of the MIC in combination and the MIC alone of the tested drug. The FIC index is calculated according to the

following formula:

FIC index = FIC A + FIC B = (MIC combo1/MIC 1 alone) + (MIC combo2/MIC 2 alone).

(1)

MIC 1 alone and MIC 2 alone are the MICs of antifungals 1 and 2 when tested alone, and MIC combo 1 and MIC combo 2

are the MICs of antifungals 1 and 2 in combination.

In theory, a FIC index = 1 represents an additivity, while a FIC index < 1 is indicative of a synergy and a FIC index > 1 of

an antagonism. Nevertheless, broth microdilution techniques have an intrinsic variability of at least one log   dilution.

Therefore, the FIC index threshold used to analyze the results should reflect this variability. Currently, the

recommendation to interpret the FIC index is as follows: interaction is synergistic when the FIC index is ≤ 0.5, indifferent if

the FIC index is > 0.5 to 4, and antagonistic if the FIC index > 4  (Figure 4).
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Figure 4. Example of a synergistic (A), indifferent (B), and antagonistic (C) interaction of two antifungals according to the

checkerboard method and calculated by the FIC index. If there is no FIC index > 4, then the lowest FIC index is retained.

If there is at least one FIC index > 4, then the highest FIC index is retained. Synergy is defined as a FIC index ≤ 0.5,

indifference as a FIC index > 0.5 to 4, and antagonism as a FIC index > 4.

With the checkerboard method, different combinations of concentrations of the antifungals are tested at the same time. It

is therefore possible to calculate several FIC indices for the tested combination. The minimum FIC index is reported in

absence of antagonism, and the maximum FIC index in case of antagonism. Defining the threshold of the FIC index is one

of the problems of this approach, but there are others, such as the evaluation of the MIC itself. Depending on the endpoint

used for MIC determination (50% or 90% of growth inhibition compared to the growth control), one can come to

completely different conclusions .

2.4.2. Surface Response Modeling

Response surface analysis is an alternative approach that does not require the determination of MICs. Unlike the FIC

index, it is therefore independent of an inhibition endpoint. Moreover, it allows for the calculation and visualization of the

combined effect of the two molecules for all tested concentrations, and not only for those corresponding to an MIC. This

approach can be based on different theories (Loewe, Bliss, and other) and calculations are generally performed by

dedicated software. In this approach, the inhibition curve of each antifungal agent is modeled on the basis of the growth

rate obtained in each well containing the molecule alone . From these dose-response curves, a theoretical growth

inhibition matrix (represented by a theoretical dose-response surface) is modeled, corresponding to the inhibition rates

expected in each well for the case where the interaction is purely indifferent, according to the chosen theory (Loewe,

Bliss, or other model). The matrix of the experimental data (represented by an experimental dose-response surface) is

then compared to the theoretical matrix. If the observed growth is weaker (stronger inhibition), synergy is concluded

(Figure 5), whereas if the observed growth is stronger (weaker inhibition), antagonism is concluded. Apart of the graphical

output, it is possible to generate metrics (for example the SUM-SYN-ANT metric in the Combenefit software), which can

be used to quantitatively assess the drug interactions. Taking into account the intrinsic variability of the broth microdilution

checkerboard technique, it is necessary to generate experimental data of the antifungals combined with themselves in

order to define the threshold used for the interpretation of the metric .
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Figure 5.  Example of a response-surface analysis for an in vitro antifungal combination experiment. Graphics were

generated by the Combenefit software .

3. In Vivo Techniques

It is important to confirm the in vitro data by in vivo data. As the incidence of most fungal infections compared to bacterial

infections is lower, it is very difficult to perform clinical trials in patients, although it has been done in some instances.

Combination of amphotericin B with flucytosine has been tested for the treatment of cryptococcal meningitis , or

combination of voriconazole with anidulafungin for the treatment of invasive aspergillosis . Therefore, animal models

are essential to evaluate antifungal drug combinations in vivo.

There are no standardized techniques for testing antifungal combinations in animal models. Mammalian models (e.g.,

mice) are most often used. At least three groups of animals are needed to study the combination of two antifungals: one

receiving the combination (A + B), one with the molecule A alone, and one with the molecule B alone. A control group of

infected but non-treated animals should also be included in the experiments. The most frequently used evaluation criteria

are the mortality rate and the fungal load in the target organs (determination of the number of CFU per gram of tissue by

culture). To evaluate the effectiveness of the combination (mortality or number of CFUs in the organs), the group receiving

the combination therapy is compared to the groups receiving monotherapy. It has to be noted that the inoculum size used

to study the CFU in the organs or mortality rate is not the same. To determine the most suitable inoculum size and

antifungal dosages, preliminary experiments have to be performed. To assess whether the combination is more effective

than the monotherapies, the drugs alone should not give a maximum response, i.e., either a survival of all animals or a

sterilization of the organs. This may therefore imply that the dosages of antifungals could be lower than those usually

used in humans. Several studies of antifungal combinations in animal models of invasive candidiasis 

, cryptococcosis , and aspergillosis  have been realized.

Mammalian animal models have several drawbacks. Indeed, they need dedicated infrastructures, time-consuming

experiments, and ethical considerations limit their use. To avoid these limitations, alternative models have been developed

. The  Galleria mellonella  model has been one of the most often used models in recent years . The  G.
mellonella model is interesting because it is inexpensive, easy to use, and does not require a dedicated infrastructure.

The larvae of G. mellonella are small, making them easy to handle. Additionally, the larvae can survive at 37 °C, which

makes them suitable to study human fungal pathogens. This model was first used for virulence studies, but is now also

used for the evaluation of antifungal combinations . Larval inoculation is performed by injecting a small volume

(10 µl) into a proleg on the ventral face . In general, 10 to 20 larvae per group are used. Preliminary experiments to

determine the lethal dose that results in 90% mortality (LD90), or the sub-lethal dose that results in 10% mortality (LD10)

have to be performed according to the main endpoint (mortality or fungal load in the larvae). Most often, the main endpoint
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is the mortality . G. mellonella has been used to test antifungal combinations against different species of yeasts

and filamentous fungi. In  Candida  spp. the combination of amphotericin B and flucytosine improved the survival of

infected larvae . Combinations of antifungals with antibiotics have also been tested and gave similar results 

. Finally, other studies have used this model to demonstrate the synergistic interaction between fluconazole and

other drugs against C. albicans  . Many studies have used G. mellonella as a model for the evaluation

of antifungal combinations against Cryptococcus spp. . One study used the conventional antifungal agents used for

the treatment of  Cryptococcus  infection (combination of amphotericin B with flucytosine) , another study assessed

drug repurposing using the compound astemizole (antihistaminic drug) . Combination therapy decreased the mortality

of the larvae compared to those receiving monotherapy. This model was also used to evaluate antifungal combinations

against  Aspergillus  spp. . Combination of amphotericin B with an Hsp70 inhibitor increased survival of larvae

compared to monotherapies . Another study demonstrated that combination of itraconazole with EGTA (ethylene

glycol tetra-acetic acid), a calcium chelator, is synergistic .

4. Conclusions

In vitro and in vivo studies of antifungal combinations are important to evaluate new therapeutic strategies in difficult-to-

treat fungal infections. There are robust in vitro methods based on reference techniques, although standardization has to

be improved. Advances have been made in the process of interpretation of combination results. Alternative animal models

in invertebrates, which are now commonly used for testing virulence and antifungal resistance, have proven to be useful in

the field of antifungal combinations. Although standardization is not fully achieved, significant results can be obtained due

to the possibility of concomitantly using several techniques and several form of analysis for the interpretation of the

results.
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