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Mammalian cells have developed an elaborate network of immunoproteins that serve to identify and combat viral

pathogens. Interferon-stimulated gene 15 (ISG15) is a 15.2 kDa tandem ubiquitin-like protein (UBL) that is used by

specific E1–E2–E3 ubiquitin cascade enzymes to interfere with the activity of viral proteins. Recent biochemical studies

have demonstrated how the E3 ligase HECT and RCC1-containing protein 5 (HERC5) regulates ISG15 signaling in

response to hepatitis C (HCV), influenza-A (IAV), human immunodeficiency virus (HIV), SARS-CoV-2 and other viral

infections.
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1. Introduction

Viral replication is a highly coordinated process that relies heavily on the host cellular machinery and can disrupt critical

cellular activities leading to disease and/or death . Viruses exert immense evolutionary pressure on their hosts,

driving the development of complex cellular immune responses that work to identify, combat and eliminate infectious

pathogens. For example, various mammalian tissues contain immune cells that use pattern recognition receptors (PPRs),

including toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-1-like receptors (RLRs), to screen for pathogen-

associated molecular patterns (PAMPs) in the cytosol and extracellular matrix . When cells detect a viral pathogen,

specific PRRs become activated that signal for mitochondrial antiviral signaling (MAVS) proteins to upregulate interferon-

α/β (IFN-α/β) cytokine production . Cells then secrete IFN-α/β cytokines into the extracellular matrix to alert naive

cells of an impending infection .

The production of IFN-α/β is one of the first lines of cellular defense against viral pathogens. IFN-α/β activates the Janus

kinase-signal transducer and activation of transcription (JAK–STAT) signaling pathway (Figure 1). When IFN-α/β binds to

an IFN-specific receptor on the cellular surface, a conformational change occurs that exposes sites on the cytoplasmic

part of the receptor that become phosphorylated by Janus kinase 1 (JAK1) and tyrosine-protein kinase 2 (TYK2). This

phosphorylation attracts the nuclear transcriptional regulators signal transducer and activator of transcription proteins 1

and 2 (STAT1 and STAT2) to the cellular membrane where they are also phosphorylated by TYK2. The phosphorylated

STAT1 and STAT2 proteins form a ternary complex with methylated interferon regulatory factor 9 (IRF9), which is

subsequently demethylated to signal for the migration of the STAT1–STAT2–IRF9 (SSI) complex to the nucleus. In the

nucleus, the SSI complex binds to the ISG promoter region of the interferon-stimulated response element (ISRE),

resulting in the transcriptional upregulation of hundreds of ISGs that augment the antiviral immune response by halting

ribosomal protein synthesis , inducing the activation of regulatory cell death pathways , and carrying

out the post-translational modification (PTM) of host and viral proteins that impact viral replication .
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Figure 1.  Interferon-induced ISGylation of viral proteins. During the initial stages of infection, cellular IFN-α/β surface

receptors are bound by IFN-α/β-specific ligands that expose receptor phosphorylation sites to the cytoplasm. Janus

kinase 1 (JAK1) and tyrosine-protein kinase 2 (TYK2) phosphorylate exposed cytoplasmic IFN-α/β receptor sites, thus

recruiting the nuclear transcriptional regulators signal transducer and activator of transcription proteins 1 and 2 (STAT1

and STAT2) to also be phosphorylated by TYK2. In the cytoplasm, phosphorylated STAT1 and STAT2 form a ternary

complex with methylated IRF9 which is then demethylated to signal for the migration of the STAT1–STAT2–IRF9 (SSI)

complex to the nucleus. Upon nuclear entry, the SSI complex binds to the ISG promoter region interferon-stimulated

response element (ISRE) to upregulate the transcription of several hundred ISGs, including ISG15, UBE1L, UBE2L6 and

HERC5. Translated UBE1L, UBE2L6 and HERC5 proteins are subsequently targeted to the perinuclear regions of the

cytoplasm where they work in tandem to charge, transfer and attach ISG15 onto respective viral protein substrates to

inhibit viral stability, transport and reassembly. ME, methylation. This figure was created with Biorender™.

HECT and RCC1-containing protein 5 (HERC5) and interferon-stimulated gene 15 (ISG15) are two antiviral immune

proteins that are induced following IFN-α/β signal transduction. Multiple studies have established that HERC5 plays a

central role in mammalian innate immunity by ISGylating viral proteins to disrupt viral replication . The antiviral

function of HERC5 was first discovered by researchers who found that its co-expression with the E1 ubiquitin-like modifier

activating enzyme UBE1L (Uba7; E.C. 6.2.1.45) and UBE2L6 (UbcH8; E.C. 2.3.2.23) resulted in normal rates of cellular

ISGylation activity, despite the absence of IFN-α/β stimulation .

2. ISG15: A Critical Moderator of the Host Antiviral Response

The rapid induction of ISG15 in response to viral infection has significant impacts on the cellular environment. As such,

tight regulation of the ISGylation signaling pathway is necessary for cell survival. For example, reduced expression of the

ISG15-dependent ubiquitin-specific protease 18 (USP18) results in the hyper-ISGylation of cellular proteins, induction of

apoptosis in hemopoietic tissues, brain cell injury and decreased life expectancy in murine models . ISG15 deficiencies

in humans are extremely rare and tend not to be fatal; however, such deficiencies have been associated with

mycobacterial hypersensitivity, brain calcification and skin lesions . Therefore, understanding how ISG15

influences cellular function during a viral infection is essential to clarifying the diverse range of biochemical outcomes that

can occur as a consequence of host ISGylation activity.

To date, most studies have shown that cellular ISGylation activity, albeit inhibitory on the function of other proteins, does

not signal for host or viral protein degradation as would a K48 poly-ubiquitin chain . Rather, the attachment of ISG15

to host and viral substrates results in a range of stabilizing effects that are similar to the function of K63 di-ubiquitin chain

signaling . The cellular effects caused by protein ISGylation depends on the stage of viral infection and

what specific substrate proteins are being targeted by the ISG15 cascade. For example, cellular ISGylation activity has

been shown to have an antiviral effect by (i) directing the cytosolic localization of viral proteins to inhibit their reassembly

and production and (ii) stabilizing key antiviral host proteins to augment the collective immune response . In contrast,

studies have also reported that the ISGylation of host proteins can reduce the potency of the cellular immune response

during the later stages of viral infection by signaling for host protein inhibition and/or degradation .

A 2003 study conducted by Malakohova et al. was the first to identify that ISG15 positively regulates the host antiviral

response. Their work determined that 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma 1 (PLCγ1),

mitogen-activated protein kinase 3 (MAPK3, aka ERK-1), JAK-1, and STAT1 are cellular ISGylation targets .
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Specifically, the ISGylation of these proteins was shown to upregulate the expression of ISG15-conjugating enzymes by

stabilizing proteins involved in the IRF9–JAK–STAT transduction pathway . These findings were later supported by

Przanowski et al. who showed that (i) ISGylation activity in lipopolysaccharide (LPS)-stimulated microglia promoted

STAT1 stabilization in the IRF9 signal transduction pathway and (ii) cellular ISG protein levels increased following the

ISGylation of STAT1 .

A recent study by Shi et al. has found that the ISG signal transduction protein IRF3 is targeted for ISGylation by the E3

ligase HERC5 . Analogous to IRF9, IRF3 is a master regulatory protein that activates ISG gene transcription following

the intracellular detection of viral PAMPs by PRRs, or through the host recognition of viral RNA by the cyclic GMP–AMP

synthase/stimulator of interferon genes protein (cGAS/STING) pathway . Under this mode of ISG induction, IRF3

undergoes a phosphorylation-dependent dimerization event that triggers its translocation to the nucleus. Upon nuclear

entry, the IRF3 complex acts as a transcription factor of type I interferons and other proinflammatory genes related to the

ISG family. The antiviral potency of IRF3 requires a finely tuned response to environmental signals, as is evident by the

multitude of post-translational modifications that are required to control IRF3 activation and downstream cellular function.

For example, HERC5 and ISG15 work together to modulate IRF3 activity by catalyzing the ISGylation of IRF3 at K193,

K360 and K366 residues . Once ISGylated by HERC5, IRF3 is no longer targeted by the RING E3 ligase peptidyl-prolyl

cis-trans isomerase 1 (Pin1) for K48 polyubiquitylation. Consequently, ISGylated IRF3 is able to circumvent 26S-

proteosomal degradation, which increases ISG induction rates in virally infected cells . Taken together, these studies

suggest that HERC5 and ISG15 act as positive regulators of the ISGylation feedback loop by (i) amplifying the induction

of ISGs during the early stages of viral infection, and (ii) preventing the premature termination of the antiviral interferon

response by enhancing IRF-related signal transduction.

New studies have discovered additional viral and host target substrates for the ISG15-specific enzymatic cascade. For

example, in 2019 Zhang et al. used quantitative labile free proteomics to identify new ISGylation targets in mouse liver

cells infected by the bacteria Listeria monocytogenes  . Proteomic analysis confirmed 87 previously identified ISGylation

targets and 347 new substrate proteins that are targeted by ISG15-specific cascade enzymes . For example, UBE2L6

and ISG15 were determined to ISGylate retinoic acid-inducible gene I (RIG-I) and the RNA helicase melanoma

differentiation-associated protein 5 (MDA5)–PRRs that signal for the activation of immunoproteins involved with the

humoral antiviral host response . The functional result of RIG-I ISGylation was discovered by Arimoto et al., who

determined that ISGylated RIG-I is ubiquitylated by RING finger protein 125 (RNF125) to block RIG-I cellular signaling .

Intriguingly, studies by Kim et al. also propose that ISGylated RIG-I and MDA5 do not undergo TRIM25 mediated K63-

polyubiquitylation as they would under normal cellular conditions, but rather undergo K48 polyubiquitylation by RNF125

and are subsequently targeted for 26S proteasomal degradation . Collectively, these findings verify that the ISGylation

of RIG-I and MDA5 suppresses the antiviral host response by reducing cellular interferon production through an

ubiquitylation-dependent mechanism .

ISG15 and its specific cascade enzymes are also thought to inhibit the host antiviral immune response under certain

cellular conditions. For example, new studies propose that high cellular ISG levels can interrupt the NF-kB pathway and

hinder the host proinflammatory response . It has also been found that the phosphorylation of nuclear receptor

subfamily 2 group C member 2 (also known as TAK1) leads to the ISGylation, ubiquitylation and inactivation of UBE2N

(Ubc13), an important E2 ubiquitin-conjugating enzyme involved in promoting the activity of immunologically aggressive

pathways related to host protection . Similarly, the ISGylation pathway negatively regulates the autophagic activity of

macrophages via the ISGylation of beclin-1 (BECN1) following type I interferon induction .

Mounting experimental evidence has demonstrated that ISG15 and its associated ISG15-specific cascade enzymes

dictate the expression and activity of immunological host proteins during the antiviral response. In biologically relevant

systems, the induction of the ISG15-specific enzymatic cascade has been shown to regulate both host and pathogenic

proteins. Together, these ISGylation processes are dependent on the concentration of viral proteins and RNA present in

the cell, the expression levels of ISGs and the temporal progression of the immune response as part of the interplay

between the host and viral machinery. During the early stages of infection, it appears that the ISGylation of key immune

factors serves to increase the production of antiviral protein factors to ensure the timely activation of the host’s innate

interferon system. Later, as the host’s immune response begins to control the viral infection, it is possible that the

ISGylation pathway may lead to a reduction in the expression, stability and activity of host immunoproteins to prevent the

risk of chronic inflammation, autoimmunity and ensuing tissue damage.

3. HERC5: A Unique HECT E3 Ubiquitin Ligase That ISGylates Viral
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Proteins

HERC5 is a multidomain 114 kDa protein that belongs to both the HECT E3 ubiquitin ligase family and the RCC1

superfamily . To date, 28 HECT E3 ubiquitin ligases have been identified in humans, with each having a conserved

HECT domain found near their  C-termini . The HECT domain consists of two lobes—the  N-terminal lobe that

contains the binding site for E2 cognate enzymes, and the C-terminal lobe that contains the E3′s absolutely conserved

catalytic cysteine . Coordination of the HERC5 C-terminal lobe to ISG15, as opposed to ubiquitin, provides HERC5 with

a potent anti-viral activity that is achieved by the covalent attachment of ISG15 to viral proteins. Structural studies on

members of the HECT family have also revealed that there is a flexible hinge region located between the  N- and  C-

terminal lobes of the HECT domain . In the context of ISGylation, this inherent flexibility appears to be

critical for allowing the juxtaposition of the catalytic cysteines in UBE2L6 and HERC5 for efficient ISG15 transfer , as

well as for moving the ISG15-charged HECT C-terminal lobe of HERC5 into the proximity of viral substrates . Previous

domain-mapping experiments have determined that the HERC5  N-terminal region contains five regulator of chromatin

condensation 1 (RCC1) motifs which collectively form an RCC1-like domain (RLD)—a substructure of HERC5 that plays a

direct role in the recognition and coordination of viral substrates . For example, studies have shown that HERC5 uses

its RLD domain to bind the influenza A virus (IAV) non-structural protein 1 (NS1) , the hepatitis C virus (HCV) non-

structural protein 5A (NS5A)  and multiple human immunodeficiency virus (HIV) gag particle precursor proteins .

Given the expansive amount of new research being conducted on HERC5 ISGylation, it is likely that additional HERC5

pathogenic substrates will be discovered, and the immunological consequences of these interactions will need to be

resolved.

HERC5 is the only human HECT E3 ubiquitin ligase that is known to conjugate ISG15 to host and viral substrates. The

immunological significance of HERC5 has become well established, with recent studies beginning to reveal what proteins

are targeted by the enzyme during HCV, IAV, HIV-1 and other viral replication cycles, and whether viral protein activities

are inhibited or augmented following ISG15 attachment (Table 1).

Table 1. HERC5-dependent ISGylation of viral proteins and their downstream consequences.

Virus Viral Protein Viral Inhibition Viral Antagonism References

Crimean–Congo
hemorrhagic fever virus

(CCHFV)
Polymerase L protein

ISGylation leads to the
induction of K48-

dependent protein
degradation

Deubiquitylase of the ovarian
tumor family (OTU) removes
ISG15 from proteins involved
in innate immune signaling

Ebola virus-like particles
(VLP)

Matrix protein VP40
(VP40)

Viral RNA

ISG15 inhibits budding
of VP40 by preventing
its ubiquitylation by

NEDD4
Downregulates viral

RNA
Inhibits viral replication

Ebola virus glycoprotein
blocks HERC5 (mechanism

unknown)

Erve virus (ERVEV)

Deubiquitylating
ovarian tumor family

(vOTU) domain
protease

Effects unknown DeISGylation of host anti-
virulence factors

Foot and mouth disease
virus (FMDV)

Leader protease
(Lb )

Hypothesized to direct
ISGylation of non-
structural FMDV

proteins

Cleaves ISG15 from ISGylated
proteins prior to the C-
terminus GG residues,
disabling its recycling

Human
immunodeficiency virus-

1 (HIV-1)

Gag
Viral RNA

ISGylation by HERC5
inhibits HIV viral particle

production at the
plasma membrane

ISG15 inhibits
ubiquitylation of Gag

and Gag/TSG101
interaction

Effects unknown

Human cytomegalovirus
(CMV)

Capsid scaffolding
protein UL26

Intermediate–early
protein 1 (IE1)

Nuclear egress protein
2 (NEC2)

Capsid vertex
component 2 (CVC2)

ISGylation of UL26
inhibits its suppresion

of NFkB
ISGylation of NEC2

UL26 inhibits ISGylation
IE1 reduces ISG15

transcription
NEC2 downregulates UBE1L

activity
CVC2 prevents the

degradation of UL26
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Virus Viral Protein Viral Inhibition Viral Antagonism References

Influenza A (IAV) Non-structured protein
1 (NS1A)

ISGylation by HERC5
inhibits NS1 nuclear

import
 

Influenza B (IVB)

Non-structured protein
1 (NS1B)

Nucleoprotein (NP)
Hemaglutenin

protein(HA)

ISGylation inhibits the
formation of infectious

particles
ISGylation inhibits HA

protein trafficking to the
cell surface

NS1B directly binds to ISG15
to inhibit HERC5 ISGylation to

viral proteins
NS1B binds to and

sequesters ISG15-tagged
proteins, limiting the

incorporation of ISGylated NP
protein into viral particles

Karposi’s sarcoma
herpesvirus (KSHV) vIRF1

ISGylation of vIRF1 by
HERC5 reduces viral
particle production

vIRF1 reduces ISGylation
(mechanism unknown)

Middle East respiratory
syndrome coronavirus

(MERS-CoV)

Papain-like protease
(PL ) Unknown Deubiquitylase and

deISGylase activity

Severe acute respiratory
syndrome coronavirus

(SARS-CoV)

Papain-like protease
(PL ) Unknown Deubiquitylase and

deISGylase activity

Severe acute respiratory
syndrome coronavirus 2

(SARS-CoV-2)

Papain-like protease
(PL )

Modulation of the
antiviral immune

response triggered by
MDA5

Cleaves ISG15 from MDA5
and other substrates

Vaccinia virus (VACV) Protein E3 (p25) ISGylation of cellular
antiviral proteins

VACV protein E3 inhibits
ISGylation (mechanism

unknown)

Sequence alignment studies have found that the HERC5 domain architecture is paralogous to another HECT E3 ubiquitin

ligase, HERC6, but this enzyme demonstrates a limited capability to coordinate ISG15 substrate transfer except in murine

models . These findings are surprising, particularly with the high level of sequence conservation between HERC5 and

HERC6, and thus leaving many questions on the structural mechanisms used by HERC5 to mediate viral protein

ISGylation. To uncover these mysteries, new research is required to clarify how HERC5 use its N-terminal RLD domain to

recognize and bind a wide range of viral substrates. Furthermore, now that there is a consensus as to what structures and

mechanisms are used by HERC5 to attach ISG15 onto viral substrates, it will be important to explore the molecular

dynamics involved with HERC5-substrate targeting, as well as how these dynamics allow for certain viral protein

antagonists to subvert ISG-related immune responses.

HERC5 has recently been shown to carry out viral protein ISGylation to (i) stall IAV replication by blocking NS1 protein

homodimerization , (ii) promote HCV proliferation via improved cyclophilin A recruitment by NS5A proteins  and,

alternatively, (iii) inhibit an early stage of HIV assembly by attenuating gag-particle production . In the upcoming

sections we discuss some of the recent discoveries involving the HERC5-dependent ISGylation of viral protein targets.

3.1. HERC5-Dependent ISGylation of HCV

The antiviral effects of HERC5 and ISG15 on HCV were first observed by Jung Kim et al., who were examining

mechanisms of HCV replication cycle inhibition . By conducting site-directed mutagenesis experiments on the HCV

protein NS5A, the group was able to demonstrate that HERC5 inhibits HCV by ISGylating NS5A at lysine 379 (K379) to

result in NS5A becoming targeted for K48 polyubiquitylation by an unknown E3 ligase . The researchers confirmed this

antiviral activity by demonstrating that HCV replication was unrestrained when ISG15 and its corresponding E1–E2–E3

enzyme cascade were expressed in the presence of HCV NS5A K379R variant proteins. Taken together, these findings

suggest that NS5A is the primary HCV target substrate of HERC5-dependent ISGylation, and that K379 is the sole NS5A

residue that HERC5 targets for ISGylation. More recently, Abe et al. demonstrated that the HCV NS5A protein is prone to

ISGylation at five Lys residues (K44, K68, K166, K215 and K308) . In fact, one of the ISG15 attachment points on

NS5A, K308, is located within the NS5A-binding region for cyclophilin A (CypA), a virulence factor that is required for

efficient HCV cellular propagation. Thus, HERC5 ISGylation of NS5A at K308 enhances HCV recruitment of CypA to

provide a pro-virulent replication activity, a direct contradiction of previous findings from Kim et al. . Moreover, a stand-

alone study conducted by Domingues et al. found that ISG15-related forms of HCV inhibition occur independently of

HERC5 activity . To date, no follow up research has been conducted on the HERC5–HCV ISGylation system to confirm

[78]

[79][80][81]

[82][83][84]

pro
[80][81]

pro
[85][86]

pro
[87]

[88][89][90]

[91]

[66] [67]

[68][92]

[93]

[93]

[67]

[93]

[94]



whether HERC5 ISGylation activity results in a pro- or anti-virulent response to HCV infection, and whether HERC5 is

necessary for catalyzing the modes of ISG15 inhibition that have been observed for HCV NS5A proteins.

3.2. Influenza Viruses and ISGylation by HERC5

New research by Tang et al. has shown that HERC5 targets IAV NS1 for ISGylation to prevent IAV capsid formation .

Using pulldown assays and immunoprecipitation analysis, the researchers found that HERC5 interacts with the ribosomal-

binding (RBD) and C-terminal effector domains (ED) of NS1, and that both interactions were required to form stable

HERC5–NS1 complexes . Lysine residue substitutions in IAV NS1 also revealed that HERC5 attaches ISG15 at

multiple NS1 lysine residues (K20, K41, K217, K219, K108, K110 and K126), with the strongest inhibitory effect coming

from the ISGylation of the K126 and K217 residues in the ED and RBD domains, respectively . The ISGylation of NS1

subsequently abolished the ability of NS1 to interact with protein kinase R (PKR) and blocked NS1 RBD-dependent

homodimerization, thereby significantly inhibiting IAV capsid assembly in vivo . Interestingly, it was found that certain

avian flu IAV strains, such as H5N1, demonstrated a higher rate of NS1 K217R mutation compared to most seasonal flu

strains . It was also observed that avian IAV variants were less susceptible to ISGylation at K126, suggesting that,

unlike other IAV strains, avian IAV NS1 proteins may adopt a new structure that obstructs the K126 ISGylation site from

HERC5. Given that K126 and K217 have been determined as the primary ISGylation sites involved with preventing IAV

capsid formation, these discoveries provide a possible explanation for why avian strains of the flu are more infectious and

lethal than other IAV strains. Despite HERC5 demonstrating minimal antiviral activity against certain avian IAV strains,

these findings from Tang et al. indicate that HERC5 and its ISGylation activity could serve as prime drug targets for the

development of treatments that are used to combat most seasonal IAV strains.

3.3. HERC5 Modes of Action Against HIV

A pivotal study by Woods et al. in 2011 confirmed that HERC5 prevents an early stage of HIV-1 viral assembly by

ISGylating proteins involved with Gag polyprotein (Pr55Gag) particle production . The researchers used confocal

immunofluorescence microscopy to reveal that IFN-I-induced HERC5 localizes to the cytoplasm where it forms punctuate

bodies in a variety of cell lineages, and that these bodies interact with polyribosomes . These findings were consistent

with a previous study conducted by Durfee et al., who observed that HERC5 associates with the 60S ribosomal subunit of

the polyribosome using cell fractionation . Additionally, Woods et al. found that IFN-I-induced HERC5 and HIV Gag

proteins colocalize to the plasma membrane where HERC5 ISGylates Gag particles to prevent HIV-1 viral budding.

Expanding on these findings, the research group showed HERC5 possesses a second distinct mode of HIV inhibition that

is independent of its HECT ISGylation activity . Typically, in eukaryotic cells, nascent RNA molecules remain in the

nucleus until their introns are spliced to reach maturation. However, HIV-1 can circumvent this cellular activity by

expressing the nuclear trans-activator protein Rev, which binds to the Rev-response element (RRE) located within the

HIV-1 intron . These Rev–RRE nuclear interactions permit the nuclear export of unspliced HIV-1 RNA constructs via a

translocation mechanism that involves exportin-1 (CRM1) and Ras-related nuclear protein guanidine triphosphate

(RanGTP) . Focusing specifically on mechanisms involved with HIV transcription, Woods et al. determined that the

HERC5 RLD domain localizes to the perinuclear area and reduces intracellular RanGTP levels . This correlated with

the subcellular mis-localization of Rev/RRE following their nuclear export. These findings led Woods et al. to conclude that

HERC5 acts as a host restriction factor during HIV replication by preventing an early stage of HIV-1 Pr55Gag particle

production through a HECT-dependent mechanism, and that HERC5 affects nuclear export of unspliced HIV RNA

constructs via an RLD-dependent mechanism . Importantly, the same research group has shown that other retroviruses

such as murine leukemia virus (MLV) and simian immunodeficiency virus (SIV) are also inhibited by HERC5 .

Interestingly, although SIV was inhibited by human HERC5, an ancestral version of HERC5 found in coelacanth fish was

unable to inhibit SIV replication, suggesting that the HERC5 gene has evolved to combat lentiviruses in primates .

3.4. HERC5 Combating Other Viruses

New reports have suggested that HERC5 and ISG15 play a significant role in preventing the replication of many viral

pathogens; however, the modes of viral inhibition exhibited by HERC5 and ISG15 on these pathogens are still being

characterized. For example, HERC5 has been shown to ISGylate the major capsid protein L1 of human papilloma virus 16

(HPV16) to reduce the rate of viral budding, but the specific protein interactions that occur between HERC5, ISG15 and

the L1 capsid protein of HPV16 are unknown . Another study conducted by Kim et al. found a similar function for

HERC5 and ISG15 during cytomegalovirus (CMV) replication, whereby viral budding was halted at the cellular membrane

via the HERC5-dependent ISGylation of multiple CMV factors . It was also observed that HERC5 and ISG15 are

upregulated in response to infection caused by the Zika virus , Ebola virus , vaccinia virus

, Kaposi’s sarcoma-associated herpesvirus (KSHV) , influenza B virus  and others (please see  Table 1);
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however, the specific structural and biochemical modes of inhibition enacted by HERC5 and ISG15 in response to these

pathogens is not fully understood.

Interestingly, new studies on the Ebola virus have shown that HERC5 and ISG15 exert two independent mechanisms of

inhibition. These studies show that HERC5 reduces intracellular Ebola virus RNA through an RLD-dependent mechanism

or, alternatively, free ISG15 can inhibit viral budding at the plasma membrane . ISG15 specifically inhibits VP40

budding at the plasma membrane by blocking neural precursor cell-expressed developmentally down-regulated protein 4

(NEDD4)-mediated ubiquitylation of the VP40 late domain—a PTM that usually signals for the host endosomal sorting

complexes required for transport (ESCRT) machinery to initiate budding of viral particles .

Studies in mice have found that vaccinia virus replication is enhanced in ISG15 knockout cells and inhibited in cells

expressing wildtype levels of ISG15 . ISG15-deficient cells were more resistant to apoptosis and had impaired

phagocytic activity when coming in contact with infected cells . These studies demonstrated that control of vaccinia

virus is dependent on the level of cellular ISGylation activity, where either ISG15 knockout or the deISGylation of proteins

can lead to enhanced infection kinetics.

Although it is well established that ISG15 and the ISGylation cascade enzymes are induced by cytomegalovirus infection,

their role and direct interaction with viral proteins were only recently described . Kim et al. demonstrated that knocking

down ISG15 or HERC5 lead to a significant increase in viral titers, whereas expression of ISG15 and HERC5 inhibited

viral replication by reducing viral gene expression and viral budding at the plasma membrane . To date, much of the

research into cytomegalovirus infection and its inhibition by HERC5 and ISG15 has focused on human cytomegalovirus

(HCMV) protein antagonism. However, little is known about the specific effect that ISGylation has on viral proteins other

than it is has a dominant inhibitory effect. Further studies are needed to elucidate the precise mechanism of HCMV

inhibition demonstrated by HERC5 and ISG15.

HERC5 has been shown to inhibit KSHV in an ISGylation-dependent manner, with the knockdown of either HERC5 or

ISG15 prior to viral reactivation resulting in higher titers of infectious viral particles . For example, ISG15 and HERC5

were identified as interactors of the KSHV viral homolog of interferon regulatory factor 1 (vIRF1), which is known to

decrease total protein ISGylation. Later studies suggested that adequate ISG15 expression can result in viral latency,

while the knockdown of ISG15 and ISG20 leads to lytic reactivation of the virus . A more recent study implicated CRM1

in the inhibition of KSHV by promoting nuclear retention of the autophagy adaptor protein p62 (SQSTM1) to elevate the

expression of antiviral genes . Interestingly, it was shown that HERC5 inhibits nuclear export of HIV RNA in a CRM1-

dependent manner . Although it has not been directly studied, HERC5 may inhibit the lytic phase of KSHV replication

through a mechanism involving the CRM1-dependent nuclear export pathway.

Most of the viral pathogens we have discussed in this review can also resist HERC5 and ISG15 antiviral activity by

employing viral protein machinery to block the host immune response. As viral–host interactions continue to progress, it is

likely that more pathogens will evolve and acquire new strategies to antagonize HERC5 antiviral function. These

predictions make it critical that additional studies be done to determine the mechanisms and structures that dictate the

pathogen-dependent processes of HERC5 antagonism. Such knowledge will be fundamental to the development of new

antiviral treatments aimed at counteracting viral antagonistic strategies employed against HERC5 in the cell.

3.5. Viral Antagonism of HERC5 and ISGylation

HERC5 and ISGylation are essential regulators of the antiviral immune response. Accordingly, viruses have evolved

diverse strategies to disrupt HERC5 and ISG15 immune activity. For example, viral ovarian tumor domains are common

among the Nairovirus family, each retaining at least a small level of deubiquitylation activity. Moreover, a pathogenic clade

containing the Crimean–Congo hemorrhagic fever virus (CCHFV), Nairobi sheep disease virus (NSDV), Ganjam virus

(GANV) and Erve virus (ERVEV) also possess significant deISGylation activity . Experimental evidence

suggests that viral ovarian tumor family-like domains (vOTUs) have adapted to deISGylate in their most common host

species and that deISGylation is likely a major hurdle that viruses must cross to change host specificity .

Interestingly, the most fatal virus in humans, CCHFV, is capable of both deubiquitylating and deISGylating target proteins,

likely resulting in subversion of both the antiviral and inflammatory responses . The inhibition of the CCHFV vOTU

resulted in impaired viral replication and infectivity , suggesting that this deISGylase may be a prime target for

further therapeutics to treat CCHFV.

In general, it has been difficult for researchers to delineate vOTU deISGylation activity from deubiquitylation activity and to

specifically measure the contribution of each process to viral fitness. However, recent structural analysis and mutagenesis

studies on these viral proteins have led to the identification of the binding pocket for ISG15 and ubiquitin. Interestingly, a
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single amino acid substitution can change the specificity of Hazara virus from ubiquitin to ISG15, resulting in a virus that

was able to selectively deISGylate while not being able to cleave ubiquitin from certain proteins . These discoveries

provide a useful tool for examining the effect of deISGylation and deubiquitylation in the context of innate immune

activation and sensing.

Unlike the vOTUs that promiscuously bind to both ubiquitylated and ISGylated substrates, the papain-like protease of foot

and mouth disease virus (FMDV), leader protease (Lb ), has been shown to have stronger affinity for ISGylated proteins

than for ubiquitylated proteins . FMDV acts to cleave ISG15 molecules from the target substrate adjacent to the C-

terminal Gly–Gly motif, which renders it unable to be recycled and attached to other target proteins . Likewise, the

loss of Lb  deISGylation activity significantly inhibited the ability of FMDV to grow in mice, although the researchers did

not observe an increase in antiviral gene expression to suggest that the more likely mechanism of inhibition is through the

direct ISGylation of viral proteins .

The inhibition of HERC5 ISGylation by influenza virus is generally species-specific. For instance, human and non-human

primate ISGylation is antagonized by influenza B virus, but not in mice . More recent studies have determined that

influenza virus NS1B protein counteracts ISGylation by sequestering ISGylated proteins and inhibiting their incorporation

in the viral ribonucleic complex . Further studies are required to clarify the specific mechanisms employed by influenza

viruses in different host organisms.

Intriguingly, the E3 ligase protein of vaccinia virus is a known antagonist of ISGylation . When vaccinia E3 protein is

expressed, there is a significant decrease in ISGylated proteins within the cell. This marked decrease corresponds with a

reduction in ISGylated mitochondrial proteins and impaired mitophagy activity in the infection model. This suggests that

the ISGylation of mitochondrial proteins is important for the regulation of oxidative phosphorylation and minimizing

reactive oxygen species production .

Due to the COVID-19 pandemic, the coronavirus papain-like proteases (PL ) have received considerable attention from

the scientific community. Zhang et al. recently showed that expression of ubiquitin variants (UbVs) led to tight and specific

binding of the PL  of Middle Eastern respiratory syndrome coronavirus (MERS-CoV) . Following PL –UbV complex

formation, PL  deubiquitylation, deISGylation and protease activities were significantly hindered and viral progeny were

much less infectious . Small-molecule inhibitor screens have subsequently identified the substrate-binding pocket and

the ISG15 binding site of PL  as important determinants of viral fitness and could serve as attractive targets for antiviral

drug development . For example, the small molecule GRL0617 is one of the most promising

SARS-CoV-2 inhibitors currently being studied that sterically blocks the binding of ISG15 and ubiquitin to PL   .

Furthermore, SARS-CoV-2 PL  has a higher affinity for ISG15 than monomeric ubiquitin and its activity is important for

viral pathogenesis . In cell culture and mouse models it was observed that ISGylation of the caspase-recruiting

domain (CARD) of the MDA5 domain by HERC5 was important for its oligomerization and activation . Knockdown of

either ISG15 or MDA5 resulted in loss of IRF3 phosphorylation, which is a downstream target of MDA5 . Fascinatingly,

researchers have noted that naturally emerging mutations causing residue substitutions in the ISG15-binding pocket of

PL  results in less pathogenic strains of SARS-CoV-2 . Thus far, the primary role of PL  deISGylation appears to be

suppression of the immune response, with more studies needed to determine if SARS-CoV-2 proteins are directly

ISGylated by host cell machinery and if this has an overall inhibitory effect on the virus.
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