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Flavonoids are mainly found in plant cell vacuoles in the form of C-glycosides or O-glycosides. The basic molecular

structure of flavonoids depends upon their basic C6–C3–C6 skeleton. Flavonoids are classified into seven

subclasses based on modifications to their basic skeletons; these subclasses include flavones, flavanones,

isoflavones, flavonols, chalcones, flavanols, and anthocyanins.

flavonoids  biosynthesis pathway  classification  biological activity  application

1. Flavonoid Classification

1.1. Flavones

Flavones, one of the largest classes of flavonoids, consist of 4H-chromen-4-one bearing a phenyl substituent at

position 2. Flavones mostly occur as 7-O-glycosides, which are found in celery, parsley, red pepper, chamomile,

mint, and ginkgo . Apigenin and luteolin are two common flavones (Figure A1). In nature, apigenin is usually

found in a glycosylated form, with a sugar moiety attached to the tricyclic core structure via hydroxyl groups (O-

glycosides) or directly to carbon (C-glycosides) . The principal ingredients of apigenin are glycosylated apiin,

apigenin, vitexin, isovitexin, or rhoifolin. Apigenin can scavenge free radicals and regulate antioxidant enzyme

activity in pancreatic cells, and apigenin can decrease inflammation in cancer, neuroinflammation, and

cardiovascular diseases .

[1][2][3]
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Figure A1. The Basic Structure of Flavonoids.

1.2. Flavonols

Flavonols, also called 3-hydroxy flavone, can be identified by specific substitutions in their A- and B-rings, which

are connected by a three-carbon chain . Flavonols possess hydroxyl groups at positions 5 and 7 in the A-ring and

are mainly present in epidermal cells to protect DNA against UV-induced damage . Four types of flavonol

compounds (quercetin, galangin, kaempferol, and myricetin) are mainly distributed in vegetables and fruits, such as

asparagus, onions, lettuce, broccoli, tomato, and apples (Figure A1) . Flavonols exhibit interesting biological

activities, including antioxidant, antibacterial, cardioprotective, anticancer, and antiviral activities. Dietary flavonols

can significantly decrease the risk of gastric cancer in smokers and in women (Figure A1).

1.3. Flavanones

Flavanones (dihydro-flavones) possess a saturated C-ring . The saturated double bond between positions 2 and

3 in the C-ring represents the only structural difference between flavanones and other flavonoid compounds .

Flavanones are mainly distributed in citrus fruits, including oranges, lemons, mandarins, grapefruits, clementines,

and limes . Flavanones contain hydroxyl groups at positions 5 and 7 in the A-ring and possess hydroxyl/methoxy

substituents at the C3 or C4 positions of the B-ring . The defining characteristic of flavanones is a disaccharidic

moiety linked to the seven positions of aglycone . Depending on their structural differences, flavanones can

occur in the form of naringin, naringenin, hesperidin, hesperetin, pinocembrin, likvirtin, and eriodictyol . Among

them, naringenin and hesperetin, as the main dietary flavanones, occur almost exclusively in citrus fruits (Figure

A1) . Naringin can increase the activity of antioxidant enzymes (CAT, PON, GPx, and SOD) and enhance the

immune system. Furthermore, naringenin and hesperetin have been shown to recover impaired thyroid function in

rats.
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1.4. Isoflavonoids

Isoflavones have a B-ring at the C3 position of the heterocyclic C-ring of the diphenylpropane (C6–C3–C6)

backbone, which represents their only chemical structural difference from other flavonoids . Isoflavonoids are

characteristic metabolites of leguminous plants and play essential roles in nodule induction and microbial signaling

in legumes . Isoflavones are classified into three groups: genistein, daidzein, and glycitein (Figure A1) .

The molecular structure of isoflavones is similar to that of animal estrogens. Isoflavones are phytoestrogens that

exhibit potent estrogenic activity. Phytoestrogens are similar in structure to the human female hormone 17-β-

estradiol in that they bind to estrogen receptors . In addition, isoflavones possess a strong antioxidant activity,

which can decrease the risk of cancers by inhibiting free radical-induced DNA damage .

1.5. Flavanols

Flavanols, also called catechins or flavan-3-ols, are characterized by a hydroxyl group at position 3 in the C-ring

. Flavanols lack a double bond between positions 2 and 3 in the C-ring . Several flavanols, including catechin,

gallocatechin 3-gallate, gallocatechin, epicatechin, epicatechin 3-gallate, catechin 3-gallate, and epicatechin 3-

gallate, are widely distributed in many fruits (e.g., apples, bananas, pears, and blueberries) . Flavanols can

protect blood vessels against tobacco by increasing the content of NO in blood vessels. A flavanol-rich diet can

facilitate the permanent improvement of endothelial function and prevent the development of cardiovascular

diseases .

1.6. Anthocyanins

Anthocyanins, as glycosylated polyphenolic compounds, are a group of soluble vacuolar pigments that possess a

range of colors, from orange, red, and purple to blue, depending on the pH of the micro-environment of the flowers,

seeds, fruits, and vegetative tissues . The position and number of hydroxyl and methoxyl groups present as

substituents in the flavylium structure result in different anthocyanins (Figure A1). Thus, over 650 anthocyanins

have been identified in many plants ; these are grouped into five items, including cyanidin, delphinidin, malvidin,

pelargonidin, and peonidin, and their corresponding derivatives . Anthocyanins are mainly found in the outer cell

layer of various fruits and vegetables, such as blackcurrants, grapes, and berries . The antioxidant ability of

anthocyanins is associated with their ring orientation and the position and number of free hydroxyls around the

pyrone ring. Anthocyanins play important roles in visual acuity, cholesterol decomposition, and the reduced risk of

cardiovascular disease in humans . In addition, anthocyanins are commonly used as food colorants.

1.7. Chalcones

Chalcones (1,3-diaryl-2-propen-1-ones) are natural open-chain flavonoids, carrying up to three modified or

unmodified C5-, C10-, and C15-prenyl moieties on both their A and B-rings. These bioactive products are widely

distributed in the Fabaceae, Moraceae, Zingiberaceae, and Cannabaceae families . They exhibit a wide

spectrum of pharmacological effects, including antioxidant, antibacterial, anthelmintic, antiulcer, antiviral,

antiprotozoal, and anticancer effects . Chalcones are precursors of flavonoids and isoflavonoids. Their structural
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features are easily constructed from simple aromatic compounds. Their prominent bioactivity has inspired the

synthesis of chalcone analogs, as well as minor structural modifications to natural chalcones; these compounds

form a large collection of bioactive chalcone derivatives . Xanthohumol and isbavirachalone are two

representative derivatives that exhibit abundant biological and pharmacological activity (Figure A1) .

Generally, the number and position of –OH groups have a great influence on flavonoid bioactivity. The –OH groups

can link to the carbon atoms of the benzene ring (3,5,7, and 3′,4′-dihydroxy substitution pattern), which directly

determines the bioactivity of flavonoids. Moreover, the position of the –OH group also influenced the flavonoid

bioactivity. The most effective radical scavengers are flavonoids with the 3′,4′-dihydroxy substitution pattern on the

B-ring and/or hydroxyl group at the C-3 position. In addition, the C2–C3 double bond is not necessary for high

activity. Flavanols lacking the C2–C3 double bond displayed strong activity. The presence of a 3 –OH group

significantly enhances the bioactivity.

2. Flavonoid Biosynthesis in Plants

2.1. Flavonoid Biosynthetic Pathways

Flavonoid synthesis occurs at the junction of the shikimate pathway and the acetate pathway. The former can

generate p-coumaroyl-CoA, and the latter regulates C -chain elongation  (Figure 1). Phenylalanine ammonia-

lyase (PAL) deaminates phenylalanine to ammonia and cinnamic acid . Then, C4H (cinnamic acid 4-

hydroxylase) catalyzes the production of 4-coumaric acid , and 4CL (4-coumaric acid: CoA ligase) converts 4-

coumaric acid to form 4-coumaroyl-CoA, which is a key enzyme in the phenylpropanoid metabolic pathway that

regulates the biosynthesis of lignin and flavonoids .

Figure 1. Flavonoid synthesis pathway. CHS (chalcone synthase) can catalyze three molecules of malonyl-CoA

and one molecule of p-coumaroyl-CoA to form naringeninchalcone . Malonyl-CoA is an important precursor for

the synthesis of natural products, including flavonoids and polyketides . CHI (chalcone isomerase) converted

naringenin-chalcone into flavanones . Naringenin, as an important flavonoid skeleton, is catalyzed by FNSI and

FNS II (flavone synthase I and flavone synthase II) and IFS (isoflavone synthase) to form flavones and isoflavones,

respectively . Furthermore, flavanone-3-hydroxylase (F3H), flavonol 3′-hydroxylase (F3′H), and flavonol 3′5′-

hydroxylase (F3′5′H) catalyzed naringenin to generate dihydro-myricetin, dihydro-kaempferol, and dihydro-

quercetin, respectively . The FLS (flavonol synthase) converted dihydroflavonols into flavonols (kaempferol,

[36]
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quercetin, and myricetin), which was catalyzed by the dihydroflavonol 4-reductase (DFR) to generate

leucoanthocyanidins , which was catalyzed by leucoanthocyanidin dioxygenase (LDOX) to produce

anthocyanidins . Anthocyanidins and leucoanthocyanidins were further converted to proanthocyanidins

catalyzed by leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR), respectively .

Modification of anthocyanins is responsible for the stabilization of vacuolar anthocyanins, including glycosylation,

methylation, and acylation .

2.2. Transcriptional Regulation of Flavonoid Synthesis

Flavonoid biosynthesis is tightly regulated by biosynthetic enzymes and regulatory transcription factors (TFs) .

Several TF families have been reported to be involved in regulating flavonoid biosynthesis in plants, including

WRKY, Dof, MADS-box, bZIP, MYB, bHLH, WD40, and NAC (Table 1) . Plant MYBs are characterized by a

highly conserved MYB DNA-binding domain and are further classified into four groups based on the position and

number of MYB repeats: 1R-MYB, 2R-MYB, 3R-MYB, and 4R-MYB . Among them, R2R3-MYB TFs are involved

in regulating the expression of structural genes in the flavonoid pathway . For example, transgenic tobacco

overexpressing NtMYB3 from Narcissus tazetta can reduce the content of flavonoids by inhibiting the expression of

FLSs . Transgenic Arabidopsis overexpressing GbMYB2 from Ginkgo biloba can decrease flavonoid

accumulation by inhibiting the expression of some structural genes (e.g., GbPAL, GbFLS, GbANS, and GbCHI) .

Yan et al. revealed that soybean GmMYB100 negatively regulated flavonoid biosynthesis by inhibiting the activities

of CHS and CHI promoters . In addition, the overexpression of PpMYB17 in pear calli was found to bind and

activate the promoters of structural genes of PpCHS, PpCHI, PpF3H, PpFLS, and PpUFGT under light conditions,

which enhanced the biosynthesis of flavonoids . Transgenic tobacco overexpressing FtMYB31 from Fagopyrum

tataricum increased the expression of CHS, F3H, and FLS genes and promoted the accumulation of flavonoids .

The overexpression of SbMYB8 from Scutellaria baicalensis in transgenic tobacco promoted the expression of the

SbCHS gene, increased flavonoid content, and enhanced the activities of antioxidant enzymes in transgenic

tobacco . Furthermore, bHLH TFs play essential roles in regulating the biosynthesis of flavonoids. CsMYC2 was

able to promote flavonoid biosynthesis by increasing the expression of the UFGT gene . MdbHLH3 promoted

anthocyanin accumulation and fruit coloration in response to low temperatures in apples . In addition, MBW

complexes (MYB-bHLH-WD40) regulate flavonoid biosynthesis in different plants . The TT2–TT8–TTG1

complex plays a major role in developing seeds and also plays an important role in regulating the expression of

LBGs (DFR, LDOX, TT19, TT12, AHA10, and BAN) . Moreover, the MBW complex exhibits tissue-specific

regulation of the expression of the genes involved in flavonoid biosynthesis . The MYB5–TT8–TTG1 complex is

active in the endothelium, regulating DFR, LDOX, and TT12 expression, whereas the TT2–EGL3/GL3–TTG1

complexes regulate the expression of LDOX, BAN, AHA10, and DFR in the chalaza .

Table 1. Pharmacological activities of flavonoids.
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Flavonoids Classification Pharmacological
Activity Sources of Plant References

Proanthocyanidins anthocyanins antioxidant, anti-
inflammatory, antibacterial,

grapes, apples, sorghum,
cherries, and other
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Flavonoids Classification Pharmacological
Activity Sources of Plant References

antifungal and anti-
cardiovascular

natural plant

Cyanidin anthocyanins
anti-inflammatory, antiviral,

and anticancer

black rice, black beans,
purple potatoes,

blueberries

Curcumin curcuminoids
anti-inflammatory and

anticancer
Curcuma longa

Methyl chalcone chalcones
anti-inflammatory and

anticancer
apple, citrus, soybean,

ginger, mulberry

Trans-chalcone chalcones
anti-inflammatory and

anticancer
apple, citrus, soybean,

ginger, mulberry

Xanthohumol chalcones
anti-cardiovascular and

antiviral
Humulus lupulus

Licochalcone chalcones antibacterial and antifungal Glycyrrhiza uralensis

Catechin flavanols
antioxidant, anti-

inflammatory, antiviral, and
anti-cardiovascular

Camellia sinensis

Epigallocatechin
gallate

flavanols

antioxidant, antibacterial,
antifungal, anti-

cardiovascular, and
antiviral

Camellia sinensis

Naringin flavanones

antioxidant, anti-
inflammatory, anti-
cardiovascular, and

antiviral

lemons, oranges,
grapefruits, citrus

Hesperidin flavanones
anti-inflammatory, anti-

cardiovascular, and
antiviral

lemons, limes, oranges,
grapefruits, citrus

Diosmin flavanones anti-inflammatory citrus fruits

Orientin flavanones anti-inflammatory
Trollius chinensis,

Cajanus cajan,
Crataegus laevigata

Vitexin flavanones
antioxidant, anti-
inflammatory, and

anticancer

Ficus deltoid, Spirodela
polyrhiza
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In addition, several TF families, including bZIP, NAC, Dof, and WRKY, play important roles in regulating flavonoid

biosynthesis . For example, VvibZIPC22 was able to bind and activate the promoters of structural genes of

VviCHI and VviCHS to increase their flavonoid contents . Transgenic tobacco overexpressing NtHY5 increased

the expression of phenylpropanoid pathway genes, promoted the biosynthesis of flavonoids, and enhanced plant

tolerance to salt stress . Transgenic Arabidopsis overexpressing AtNAC078 increased the content of flavonoids

under strong light conditions by upregulating the expression of CHS, F3′H, DFR, and LDO . MdNAC52

promoted the biosynthesis of flavonoid compounds (anthocyanins and procyanidins) in apples by binding and

activating the promoters of MdMYB9, MdMYB11, and LAR . Arabidopsis AtDOF4 upregulated the expression of

structural genes of DFR, LDOX, TT19, and PAP1 to increase the content of flavonoids in plants . Apple callus

overexpressing MdWRKY11 was able to increase the expression of F3H, FLS, DFR, ANS, and UFGT and promote

the biosynthesis of flavonoids and anthocyanins .

Flavonoids Classification Pharmacological
Activity Sources of Plant References

Acacetin flavanones
anti-cardiovascular,

anticancer, and antiviral
Acacia farnesiana

Silymarin flavanones
antioxidant, anti-

cardiovascular, and
antiviral

Silybum marianum

Liquiritigenin flavanones
anti-inflammatory, antiviral,

and anticancer
Glycyrrhiza uralensis

Isorhamnetin flavanones antiviral and anticancer
Ginkgo biloba,

Hippophae rhamnoides

Apigenin flavones
antibacterial, antifungal,

and antiviral
Apium graveolens

Morin flavones
antioxidant and anti-

inflammatory

Cudrania
cochinchinensis, Maclura

pomifera

Baicalin flavones
Anti-cardiovascular,
antibacterial, and

antifungal
Scutellaria baicalensis

Luteolin flavones
anti-inflammatory, anti-

cardiovascular, and
antiviral

Dracocephalum
integrifolium, Lonicera
japonica, Capsicum

annuum

Fisetin flavonols antioxidant
strawberry, apple, onion,

cucumber, and other
fruits and vegetables

Quercetin flavonols

antioxidant, anti-
inflammatory, anti-

cardiovascular,
antibacterial, and

antifungal

vegetables, fruit, seeds,
nuts, tea, and red wine

Rutin flavonols
antioxidant, anti-

inflammatory, and antiviral

rue, tobacco, jujube,
apricot, orange, tomato,
buckwheat, and citrus

fruits

Kaempferol flavonols
antioxidant, anti-

inflammatory, antibacterial,
antiviral, and anticancer

fruits, vegetables, herbs,
and other natural plants

Myricetin flavonols antioxidant, anti-
inflammatory, and anti-

Myrica rubra
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2.3. Non-Coding RNA Regulates Flavonoid Biosynthesis

Non-coding RNA, including lncRNA (long non-coding RNAs) and microRNA, played important roles in regulating

flavonoid biosynthesis . lncRNAs may act as precursors and endogenous target mimics of miRNAs to indirectly

regulate protein-coding genes (PCgenes) . Two lncRNAs, XR_001591906 and MSTRG.9304, were found to

regulate the expression of the CHS gene in flavonoid biosynthesis during peanut seed development . miRNAs

directly cleave structural genes (SG) for flavonoid synthesis, thereby negatively regulating the accumulation of

flavonoids, including miR396-targeting UFGT, miR172-targeting 4CL, and miR829.1-targeting CHS . The

miRNA-directed cleavage of TFs involved in flavonoid synthesis through miRNA–TF–SG regulatory networks such

as miR156–SPL–F3H, miR828/TAS4–MYBs–DFR, and miR858–MYBs–CHS/FLS .
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