
Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 1/20

Types of Artificial Neural Networks
Subjects: Engineering, Aerospace

Contributor: Stefano Silvestrini , Michèle Lavagna

The well-known artificial neural networks (ANNs) are nearly as old as Artificial Intelligence, and they represent a

tool, or a model, rather than a method by which to implement AI in autonomous systems. The growing interest in

Artificial Intelligence is pervading several domains of technology and robotics research. Only recently has the

space community started to investigate deep learning methods and artificial neural networks for space systems.

The applications of artificial neural networks to system identification, control synthesis and optical navigation are

reviewed and compared using quantitative and qualitative metrics.

ANN spacecraft GNC deep learning

1. Feed-Forward Networks

Feedforward neural networks (FFNN) are the oldest and most common network architecture, and they form the

fundamental basis for most of the deep learning models. The term feedforward refers to the information flow that

the network possesses: the network is evaluated starting from x→ to the output y→. The network generates an

acyclic graph. Two important design parameters to take into account when designing a neural network are:

Depth: Typical neural networks are actually nested evaluations of different functions, commonly named input,

hidden and output layers. In practical applications, low-level features of the dataset are captured by the initial

layers up to high-level features learned in the subsequent layer, all the way to the output layer.

Width: Each layer is generally a vector valued function. The size of this vector valued function, represented by

the number of neurons, is the width of the model or layer.

Feedforward networks are a conceptual stepping stone on the path to recurrent networks .

1.1. Multilayer Perceptron

The multilayer perceptron is the most used deep model that is developed to build an approximation of a given

function f˜ . The network defines the mapping between input and output and learns the

optimal values of the weights w→ that yield the best function approximation. The elementary unit of the MLP is the

neuron. The induced local field of neuron j, which is the input of the activation function at neuron j, can be

expressed as:

[1][2][3]

[1][2][3] →
y = N (

→
x,

→
w)

ϕj (⋅)

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 2/20

(1)

where Ci is the set of neurons that share a connection with layer j; bj is the bias term of neuron j. The output of a

neuron is the result of the application of the activation function to the local field vj:

(2)

The activation function (also known as unit function or transfer function) performs a non-linear transformation of the

input state. The most common activation functions are reported in Table 1. Among the most commonly used, at

least in spacecraft related applications, are the hyperbolic tangent and the ReLu unit. The softmax function is

basically an indirect normalization: it maps a n-dimensional vector x into a normalized n-dimensional output vector.

Hence, the output vector values represent probabilities for each of the input elements. The softmax function is

often used in the final output layer of a network; therefore, it is generally different from the activation functions used

in each hidden layer. For the sake of completeness, a perceptron is originally defined as a neuron that has the

Heaviside function as the activation function.

Table 1. Summary of most common ANN architecture used in space dynamics, guidance, navigation and control

domain. The training types are supervised (S), unsupervised (U) and reinforcement learning (R).

vj (p) = ∑
i∈Ci

wjiyi (p) + bj

yj (p) = ϕj (vj (p))

Network
Type ArchitectureTrainingAlgorithm Space Applications

Feedforward

MLP S/R Backpropagation
Dynamics approximation, value
function approximation

RBFNN S/U/R
Backpropagation/
Lyapunov/K-means
clustering

Dynamics approximation, regression,
time-series prediction

AE U Backpropagation
Dimensionality reduction, state-space
modelling, data encoding, anomaly
detection

CNN S Backpropagation
Feature detection, image
classification, vision-based navigation

Recurrent
LRNN S/R

Backpropagation through
time

Dynamics approximation, time-series
prediction

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 3/20

1.2. Radial-Basis Function Neural Network

A radial-basis-function neural network is a single-layer shallow network whose neurons are Gaussian functions.

This network architecture possesses a quick learning process, which makes it suitable for online dynamics

identification and reconstruction. The highlights of the mathematical expression of the RBFNN are reported here for

clarity. For a generic state input δχ−→∈Rn, the components of the output vector γ→∈Rj of the network are:

(3)

In a compact form, the output of the network can be expressed as:

(4)

where W−→=[wil] for i=1,…,m, l=1,…,j is the trained weight matrix and Φ(δ→χ)=[Φ1(δχ)Φ2(δχ)…Φm(δχ)]T is the

vector containing the output of the radial basis functions, evaluated at the current system state. The RBF network

learns to designate the input to a center, and the output layer combines the outputs of the radial basis function and

weight parameters to perform classification or inference. Radial basis functions are suitable for classification,

function approximation and time series prediction problems. Typically, the RBF network has a simpler structure and

a much faster training process with respect to MLP, due to the inherent capability of approximating nonlinear

functions using shallow architecture. As one could note, the main difference in the RBFNN with respect to the MLP

is that the kernel is a nonlinear function of the information flow: in other words, the actual input to the layer is the

nonlinear radial function Φ(δχ) evaluated at the input data δχ, most commonly Gaussian ones. The most used

radial-basis functions that can be used and that are found in space applications are :

Network
Type ArchitectureTrainingAlgorithm Space Applications

NARX S/R
Backpropagation through
time

Dynamics approximation, time-series
prediction

HNN S
Backpropagation through
time

Combinatorial optimization, system
identification

LSTM S/R
Backpropagation through
time

Time-series prediction, dynamics
approximation

GRU S/R
Backpropagation through
time

Time-series prediction, dynamics
approximation, anomaly detection

γl(δχ) =
m

∑
i=1

wilΦi(δχ)
−→−→

γ(δχ) = W TΦ(δχ)
−→−→

[4][5][6]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 4/20

(5)

where r is the distance from the origin, c is the center of the RBF, σ is a control parameter to tune the smoothness

of the basis function and θ is a generic bias. The number of neurons is application-dependent, and it shall be

selected by trading off the training time and approximation , especially for incremental learning applications. The

same consideration holds for the parameters η=1σ, which impact the shape of the Gaussian functions. A high value

for η sharpens the Gaussian bell-shape, whereas a low value spreads it on the real space. On the one hand, a

narrow Gaussian function increases the responsiveness of the RBF network; on the other hand, in the case of

limited overlapping of the neuronal functions due to overly narrow Gaussian bells, the output of the network

vanishes. Hence, ideally, the parameter η is selected based on the order of magnitude of the exponential argument

in the Gaussian function. The output of the neural network hidden layer, namely, the radial functions evaluation, is

normalized:

(6)

The classic RBF network presents an inherent localized characteristic, whereas the normalized RBF network

exhibits good generalization properties, which decreases the curse of dimensionality that occurs with classic

RBFNN . A schematic of a RBFNN is reported in Figure 1.

Gaussian : Φ(r) = e
−

(r−c)2

2σ2

Φ(r) =
1

(σ2 + r2)α

Linear : Φ(r) = r

Thin − plate Spline : Φ(r) = r2ln (r)

Logistic Function : Φ(r) =
1

1 + e(r/σ2)−θ

[5]

→
Φnorm (δχ) =

Φ(δχ)

∑m
i=1 Φi (δχ)

[6]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 5/20

Figure 1. Architecture of the RBF network. The input, hidden and output layers have J1, J2 and J3 neurons,

respectively .

1.3. Autoencoders

The autoencoder is a particular feedforward neural network trained using unsupervised learning. The autoencoder

learns to reproduce the unit mapping from a certain information input vector I→∈Rn×n to I→ itself. The topological

constraint dictates that the number of neurons in the next layer must be lower than the previous one. Such a

constraint forces the network to learn a description of the input vector that belongs to the lower-dimensional space

of the subsequent layers without losing information. The amount of information lost while encoding a downsizing

the input vector is measured by the fitting discrepancy between the input and the reconstructed vector I→ .

The desired lower-dimensional vector concentrating the information contained in the input vector is the layer at

which the network starts growing again; see Figure 2. It is important to note that the structure of an autoencoder is

exactly the same as the MLP, with the additional constraint of having the same numbers of input and output nodes.

[6]

[7][8][9]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 6/20

Figure 2. Basic autoencoder structure.

The autoencoders are widely used for unsupervised applications: typically, they are used for denoising,

dimensionality reduction and data representation learning.

1.4. Convolutional Neural Networks

Feedforward networks are of extreme importance to machine learning applications in the space domain. A

specialized kind of feedforward network, often referred as a stand-alone type, is the convolutional neural network

(CNN) . Convolutional networks are specifically tailored for image processing; for instance, CNNs are used for

object recognition, image segmentation and classification. The main reason why traditional feedforward networks

are not suitable for handling images is due to the fact that one image can be thought of as a large matrix array. The

number of weights, or parameters, to efficiently process large two-dimensional images (or three if more image

channels are involved) quickly explodes as the image resolution grows. In general, given a network of width W and

depth D, the number of parameters nw for a fully connected network is nw∼DW2+W. For instance, a low resolution

image I→∈R32×32 has a width of W2, by simply unrolling the image into a 1D array: this means that nw106. A

high resolution image, e.g., I→∈R1024×1024, quickly reaches nw∼1012. This shortcoming results in complex

training procedures, very much subject to overfitting. The convolutional neural network paradigm stands for the

idea of reducing the number of parameters starting from the main assumptions:

Low-level features are local;

[10]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 7/20

Features are translationally invariant;

High-level features are composed of low-level features.

Such assumptions allow a reduction in the number of parameters while achieving better generalization and

improved scalability to large datasets. Indeed, instead of using fully connected layers, a CNN uses local

connectivity between neurons; i.e., a neuron is only connected to nearby neurons in the next layer . The basic

components of a convolutional neural network are:

Convolutional layer: the convolutional layer is core of the CNN architecture. The convolutional layer is built up

by neurons which are not connected to every single neuron from the previous layer but only to those falling

inside their receptive field. Such architecture allows the network to identify low-level features in the very first

hidden layer, whereas high-level features are combined and identified at later stages in the network. A neuron’s

weight can be thought of as a small image, called the filter or convolutional kernel, which is the size of the

receptive field. The convolutional layer mimics the convolution operation of a convolutional kernel on the input

layer to produce an output layer, often called the feature map. Typically, the neurons that belong to a given

convolutional layer all share the same convolutional kernel: this is referred to as parameter sharing in the

literature. For this reason, the element-wise multiplication of each neuron’s weight by its receptive field is

equivalent to a pure convolution in which the kernel slides across the input layer to generate the feature map. In

mathematical terms, a convolutional layer, with convolutional kernel W−→, operating on the previous

layer I→ (being either an intermediate feature map or the input image), performs the following operation:

(7)

where fi,j is the (i,j) position of the output feature map.

Activation layer: An activation function is utilized as a decision gate that aids the learning process of intricate

patterns. The selection of an appropriate activation function can accelerate the learning process . The most

common activation functions are the same as those used for the MLP and are presented.

Pooling layer: The objective of a pooling layer is to sub-sample the input image or the previous layer in order to

reduce the computational load, the memory usage and the number of parameters, which prevents overfitting

while training . The pooling layer works exactly with the same principle of the receptive field. However, a

pooling neuron has no weights; hence, it aggregates the inputs by calculating the maximum or the average

within the receptive field as output.

Fully-connected layer: Similarly to MLP as for traditional CNN architectures, a fully connected layer is often

added right before the output layer to further capture non-linear relationships of the input features . The

[8]

fi,j = (
→
I ∗ W)

−→

[10]

[10][11]

[8][10]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 8/20

same considerations discussed for MLP hold for CNN fully connected layers.

An example of a CNN architecture is shown in Figure 3.

Figure 3. Example CNN architecture with convolutional, max-pooling and fully connected layers.

2. Recurrent Neural Networks

Recurrent neural networks comprise all the architectures that present at least one feedback loop in their layer

interactions . A subdivision that is seldom used is between finite and infinite impulse recurrent networks. The

former is given by a directed acyclic graph (DAG) that can be unrolled in time and replaced with a feedforward

neural network. The latter is a directed cyclic graph (DCG) that cannot be unrolled and replaced similarly .

Recurrent neural networks have the capability of handling time-series data efficiently. The connections between

neurons form a directed graph, which allows internal state memory. This enables the network to exhibit temporal

dynamic behaviors.

2.1. Layer-Recurrent Neural Network

The core of the layer-recurrent neural network (LRNN) is similar to that of the standard MLP . This means that

the same considerations for model depth, width and activation functions hold in the same manner. The only

addition is that in the LRNN, there is a feedback loop with a single delay around each layer of the network, except

for the last layer. A schematic of the LRNN is sketched in Figure 4.

[1]

[8]

[1]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 9/20

Figure 4. Schematic of a layer-recurrent neural network. The feedback loop is a tap-delayed signal rout.

2.2. Nonlinear Autoregressive Exogenous Model

The nonlinear autoregressive exogenous model is an extension of the LRNN that uses the feedback coming from

the output layer . The LRNN owns dynamics only at the input layer. The nonlinear autoregressive network with

exogenous inputs (NARX) is a recurrent dynamic network with feedback connections enclosing several layers of

the network. The NARX model is based on the linear ARX model, which is commonly used in time-series modeling.

The defining equation for the NARX model is

(8)

where y is the network output and u is the exogenous input, as shown in Figure 5. Basically, it means that the next

value of the dependent output signal y is regressed on previous values of the output signal and previous values of

an independent (exogenous) input signal. It is important to remark that, for a one tap-delay NARX, the defining

equation takes the form of an autonomous dynamical system.

[12]

yk = N (yk−1, yk−2, … , yk−n,uk−1,uk−2, … ,uk−n)

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 10/20

Figure 5. Schematic of a nonlinear autoregressive exogenous model. The feedback loop is a tap-delayed signal

rout .

2.3. Hopfield Neural Network

The formulation of the network was due to Hopfield , but the formulation by Abe is reportedly the most suited

for combinatorial optimization problems , which are of great interest in the space domain. For this reason, here

the most recent architecture is reported. A schematic of the network architecture is shown in Figure 6.

Figure 6. The Hopfield neural network structure .

In synthesis, the dynamics of the i-th out of N neurons is written as:

(9)

where pi is the total input of the i-th neuron; wij and bi are parameters corresponding, respectively, to the synaptic

efficiency associated with the connection from neuron j to neuron i and the bias of the neuron i. The term si is

basically the equivalent of the activation function:

[13]

[14] [15]

[16]

[16]

dpi

dt
=

N

∑
j=1

wijsj − bi

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 11/20

(10)

where β>0 is a user-defined coefficient, and ci is the user-defined amplitude of the activation function. The

recurrent structure of the network entails the dynamics of the neurons; hence, it would be more correct to refer

to p(t) and s(t) as functions of time or any other independent variable. An important property of the network, which

will be further discussed in the application for parameter identification, is that the Lyapunov stability theorem can be

used to guarantee its stability. Indeed, since a Lyapunov function exists, the only possible long-term behavior of the

neurons is to asymptotically approach a point that belongs to the set of fixed points, meaning

where dVdt=0, V being the Lyapunov function of the system, in the form:

(11)

where the right-hand term is expressed in a compact form, with s→, the vector of s neuron states, and b→, the

bias vector. A remarkable property of the network is that the trajectories always remain within the

hypercube [−ci,ci] as long as the initial values belong to the hypercube too . For implementation purposes,

the discrete version of the HNN is employed, as was done in .

2.4. Long Short-Term Memory

The long-short term memory network is a type of recurrent neural network widely used for making predictions

based on times series data. LSTM, first proposed by Hochreiter , is a powerful extension of the standard RNN

architecture because it solves the issue of vanishing gradients, which often occur in network training. In general,

the repeating module in a standard RNN contains a single layer. This means that if the RNN is unrolled, you can

replicate the recurrent architecture by juxtaposing a single layer of nuclei. LSTMs can also be unrolled, but the

repeating module owns four interacting layers or gates. The basic LSTM architecture is shown in Figure 7.

si = ci tanh
pi

β

V = −
1

2

N

∑
i=1

N

∑
j=1

wijsisj +
N

∑
i=1

bisi = −
1

2

→
sTW

→
s +

→
sT

→
b

[16][17]

[16][18]

[19]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 12/20

Figure 7. The core components of the LSTM are the cell (C), the input gate (i), the output gate (o) and

the forget gate (f) .

The core idea is that the cell state lets the information flow: it is modified by the three gates, composed of a

sigmoid neural net layer and a point-wise multiplication operation. The sigmoid layer of each gate outputs a

value ∈[0,1] that defines how much of the core information is let through. The basic components of the LSTM

network are summarized here:

Cell state (C): The cell state is the core element. It conveys information through different time steps. It is

modified by linear interactions with the gates.

Forget gate (f): The forget gate is used to decide which information to let through. It looks at the input xk and

output of the previous step yk−1 and yields a number ∈[0,1] for each element of the cell state. In compact form:

(12)

Input gate (i): The input gate is used to decide what piece of information to include in the cell state. The sigmoid

layer is used to decide on which value to update, whereas the tanh describes the entities for modification,

[19]

f = σ(Wf ⋅ [yk−1,xk] +
→
bf]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 13/20

namely, the values. It then generates a new estimate for the cell state C˜:

(13)

Memory gate: The memory gate multiplies the old cell state with the output of the forget gate and adds it to the

output of the input gate. Often, the memory gate is not reported as a stand-alone gate, due to the fact that it

represents a modification of the cell state itself, without a proper sigmoid layer:

(14)

Output gate: The output gate is the final step that delivers the actual output of the network yk, a filtered version

of the cell state. The layer operations read:

(15)

In contrast to deep feedforward neural networks, having a recurrent architecture, LSTMs contain feedback

connections. Moreover, LSTMs are well suited not only for processing single data points, such as input vectors, but

efficiently and effectively handle sequences of data. For this reason, LSTMs are particularly useful for analyzing

temporal series and recurrent patterns.

2.5. Gated Recurrent Unit

The gated recurrent unit (GRU) was proposed by Cho to make each recurrent unit adaptively capture

dependencies of different time scales. Similarly to the LSTM unit, the GRU has gating units that modulate the flow

of information inside the unit, but without having a separate memory cells . The basic components of GRU

share similarities with LSTM. Traditionally, different names are used to identify the gates:

Update gate (u): The update gate defines how much the unit updates its value or content. It is a simple layer

that performs:

i = σ(Wi ⋅ [yk−1,xk] +
→
bi)

C̃k =tanh (Wc ⋅ [yk−1,xk] +
→
bc)

Ck = f ⊙ Ck−1 + i ⊙ C̃k

o = σ(Wo ⋅ [yk−1,xk] +
→
bo)

yk = o⊙ tanh Ck

[20]

[20][21]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 14/20

(16)

Reset gate r: The reset gate effectively makes the unit process the input sequence, allowing it to forget the

previously computed state:

(17)

The output of the network is calculated through a two-step update, entailing a candidate update

activation y˜k calculated in the activation h layer and the output yk:

(18)

A schematic of GRU network is reported in Figure 8.

Figure 8. The core components of the GRU are the reset gate (r) and the update gate (u) coupled with the

activation output composed of the tanh layer.

3. Spiking Neural Networks

u = σ(Wu ⋅ [yk−1,xk] +
→
bu)

r = σ(Wr ⋅ [yk−1,xk] +
→
br)

ỹk =tanh Wh ⋅ [yk−1,xk] +
→
bh

yk = (1 − u) ⊙ yk−1 + u ⊙ ỹk

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 15/20

Spiking neural networks (SNN) are becoming increasingly interesting to the space domain due to their low-power

and energy efficiency. Indeed, small satellite missions entail low-computational-power devices and in general lower

system power budgets. For this reason, SNNs represent a promising candidate for the implementation of neural-

based algorithms used for many machine learning applications: among those, the scene classification task is of

primary importance for the space community. SNNs are the third generation of artificial neural networks (ANNs),

where each neuron in the network uses discrete spikes to communicate in an event-based manner. SNNs have the

potential advantage of achieving better energy efficiency than their ANN counterparts. While generally a loss of

accuracy in SNN models is reported, new algorithms and training techniques can help with closing the gap in

accuracy performance while keeping the low-energy profile. Spiking neural networks (SNNs) are inspired by

information processing in biology. The main difference is that neurons in ANNs are mostly non-linear but

continuous function evaluations that operate synchronously. On the other hand, biological neurons employ

asynchronous spikes that signal the occurrence of some characteristic events by digital and temporally precise

action potentials. In recent years, researchers from the domains of machine learning, computational neuroscience,

neuromorphic engineering and embedded systems design have tried to bridge the gap between the big success of

DNNs in AI applications and the promise of spiking neural networks (SNNs) . The large spike sparsity and

simple synaptic operations (SOPs) in the network enable SNNs to outperform ANNs in terms of energy efficiency.

Nevertheless, the accuracy performance, especially in complex classification tasks, is still superior for deep ANNs.

In the space domain, the SNNs are at the earliest stage of research: mission designers strive to create algorithms

characterized by great computational efficiency and low power applications; although they are not yet applied to

guidance, navigation and control applications. Finally, SNNs on neuromorphic hardware exhibit favorable

properties such as low power consumption, fast inference and event-driven information processing. This makes

them interesting candidates for the efficient implementation of deep neural networks particularly utilized in image

classification.

The most peculiar feature of SNNs is that the neurons possess temporal dynamics: typically, an electrical analogy

is used to describe their behavior. Each neuron has a voltage potential that builds up depending on the input

current that it receives. The input current is generally triggered by the spikes the neuron receives. A schematic of

the neuron parameters can be seen in Figure 9 and Figure 10. There are numerous neural architectures that

combine these notions into a set of mathematical equations; nevertheless, the two most common alternatives are

the integrate-and-fire neuron and the leaky-integrate-and-fire neuron.

[22][23][24]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 16/20

Figure 9. Architecture of a simple spiking neuron. Spikes are received as inputs, which are then either integrated

or summed depending on the neuron model. The output spikes are generated when the internal state of the neuron

reaches a given threshold.

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 17/20

Figure 10. An illustrative schematic depicting the membrane potential reaching the threshold, which generates

output spikes .

3.1. Types of Neurons

Integrate and fire (IF): The IF neuron model assumes that spike initiation is governed by a voltage threshold.

When the synaptic membrane reaches and exceeds a certain threshold, the neuron fires a spike and the

membrane is set back to the resting voltage Vrest. In mathematical terms, its simplest form reads:

(19)

Leaky integrate and fire (LIF): The LIF neuron is a slightly modified version of the IF neuron model. Indeed, it

entails an exponential decrease in membrane potential when not excited. The membrane charges and

discharges exponentially in response to injected current. The differential equation governing such behavior can

be written as:

(20)

where λ is the leak conductance and V is again the membrane potential with respect to the rest value.

As mentioned, the list is not extensive, and the reader is suggested to refer to for a comprehensive review of

neuron models.

3.2. Coding Schemes

The transition between dense data and sparse spiking patterns requires a coding mechanism for input coding and

output decoding. For what concerns the input coding, the data can be transformed from dense to sparse spikes in

different ways, among which the most used are:

Rate coding: it converts the input intensity into a firing rate or spike count;

Temporal (or latency) coding: it converts the input intensity to a spike time or relative spike time.

Similarly, in output decoding, the data can be transformed from sparse spikes to network output (such as

classification class) in different ways, among which the most used are:

[23]

C
dV (t)

dt
= i (t)

C
dV (t)

dt
+ λV (t) = i (t)

[25]

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 18/20

Rate coding: it selects the output neuron with the highest firing rate, or spike count, as the predicted class;

Temporal (or latency) coding: it selects the output neuron that fires first, or before a given threshold time, as the

predicted class

Roughly speaking, the current literature agrees on specific advantages for both the coding techniques. On one

hand, the rate coding is more error tolerant given the reduced sparsity of the neuron activation. Moreover, the

accuracy and learning convergence have shown superior results in rate-based applications so far. On the other

hand, given the inherent sparsity of the encoding-decoding scheme, latency-based approaches tend to outperform

the rate-based architectures in inference, training speed and, above all, power consumption.

References

1. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Massachusetts Institute of Technology:
Massachusetts, MA, USA, 2016.

2. Fausett, L. Fundamentals of Neural Networks; Pearson: London, UK, 1994.

3. Lippmann, R. Neural Networks, a Comprehensive Foundation; Prentice Hall: Hoboken, NJ, USA,
2005; Volume 5, pp. 363–364.

4. Silvestrini, S.; Lavagna, M. Neural-aided GNC reconfiguration algorithm for distributed space
system: Development and PIL test. Adv. Space Res. 2021, 67, 1490–1505.

5. Pesce, V.; Silvestrini, S.; Lavagna, M. Radial basis function neural network aided adaptive
extended Kalman filter for spacecraft relative navigation. Aerosp. Sci. Technol. 2020, 96, 105527.

6. Wu, Y.; Wang, H.; Zhang, B.; Du, K.L. Using Radial Basis Function Networks for Function
Approximation and Classification. ISRN Appl. Math. 2012, 2012, 1–34.

7. Shrestha, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7,
53040–53065.

8. Emmert-Streib, F.; Yang, Z.; Feng, H.; Tripathi, S.; Dehmer, M. An Introductory Review of Deep
Learning for Prediction Models With Big Data. Front. Artif. Intell. 2020, 3, 1–23.

9. Masti, D.; Bemporad, A. Learning Nonlinear State-Space Models Using Deep Autoencoders. In
Proceedings of the IEEE Conference on Decision and Control, Paris, France, 11–13 December
2019; Volume 2018-12, pp. 3862–3867.

10. Khan, A.; Sohail, A.; Zahoora, U.; Saeed, A. A Survey of the Recent Architectures of Deep
Convolutional Neural Networks; Springer: Amsterdam, The Netherlands, 2020; Volume 53, pp.
5455–5516.

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 19/20

11. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media:
Sebastopol, CA, USA, 2019.

12. Nelles, O. Nonlinear System Identification; Springer: London, UK, 2003; Volume 39, pp. 564–568.

13. Silvestrini, S.; Lavagna, M. Relative Trajectories Identification in Distributed Spacecraft Formation
Collision-Free Maneuvers using Neural-Reconstructed Dynamics. In Proceedings of the AIAA
Scitech 2020 Forum, Kissimmee, FL, USA, 8–12 January 2020; pp. 1–14.

14. Hopfield, J.J. Neurons with graded response have collective computational properties like those
of two-state neurons. Proc. Natl. Acad. Sci. USA 1984, 81, 3088–3092.

15. Abe. Theories on the Hopfield neural networks. In Proceedings of the International 1989 Joint
Conference on Neural Networks, Washington, DC, USA, 6 August 1989; Volume 1, pp. 557–564.

16. Pasquale, A.; Silvestrini, S.; Capannolo, A.; Lavagna, M. Non-Uniform Gravity Field Model On-
Board Learning During Small Bodies Proximity Operations. In Proceedings of the 70th
International Astronautical Congress, Washington, DC, USA, 21–25 October 2019; pp. 21–25.

17. Atencia, M.; Joya, G.; Sandoval, F. Parametric identification of robotic systems with stable time-
varying Hopfield networks. Neural Comput. Appl. 2004, 13, 270–280.

18. Hernández-Solano, Y.; Atencia, M.; Joya, G.; Sandoval, F. A Discrete Gradient Method to
Enhance the Numerical Behaviour of Hopfield Networks. Neurocomputers 2015, 164, 45–55.

19. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.

20. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y.
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine
Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational
Linguistics: London, UK, 2014; pp. 1724–1734.

21. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural
networks on sequence modeling. In Proceedings of the NIPS 2014 Workshop on Deep Learning,
Montreal, BC, Canada, 12 December 2014.

22. Ponulak, F.; Kasiński, A. Information Processing, Learning and Applications; Springer:
Amsterdam, The Netherlands, 2011; pp. 409–433.

23. Eshraghian, J.K.; Ward, M.; Neftci, E.; Wang, X.; Lenz, G.; Dwivedi, G.; Bennamoun, M.; Jeong,
D.S.; Lu, W.D. Training Spiking Neural Networks Using Lessons from Deep Learning; Cornell
University: Ithaca, NY, USA, 2021; pp. 1–44.

24. Pfeiffer, M.; Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Front.
Neurosci. 2018, 12, 774.

Types of Artificial Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/27605 20/20

25. Nguyen, D.A.; Tran, X.T.; Iacopi, F. A review of algorithms and hardware implementations for
spiking neural networks. J. Low Power Electron. Appl. 2021, 11, 23.

Retrieved from https://encyclopedia.pub/entry/history/show/67234

