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Owing to the added advantages of high stability and low cost, the position sensorless method of SRMs has been

extensively studied to advance its use in vehicles and construction machinery.

additional components  hybrid detection method  position sensorless control  whole speed

1. Introduction

The switched reluctance motor (SRM) is considered to be one of the best potential motors due to its simple

structure, high efficiency, outstanding fault tolerance, and flexible control methods . It limits general

application in that its doubly salient structure leads to large torque ripple and noise. However, with the rapid

development of control theory, finite element analysis (FEA), and power electronics, SRMs are gradually being

used in vehicles and other fields .

Switched reluctance motors are widely used in many industrial fields, such as mild-hybrid BSG drives, hybrid

vehicles, construction machinery, and aerospace engines, etc., . To fully discover the potential

advantages of SRM, fault-tolerant control research , global optimization considering driving cycles and

manufacturing fluctuations , minimum torque ripple control , and position sensorless

control  have all been extensively studied. The sensorless approach has attracted much attention

because it enables the SRM to have the advantages of low cost, low risk, and is not limited by hardware.

For the SRM drive system, the position signal of the rotor is indispensable. However, the position sensor carries a

potential risk of failure and limits the speed regulation performance due to the limitation of the sensor resolution 

. To eliminate the negative effects, increasing position sensorless methods have

emerged with the deepening of theoretical research on SRMs. As shown in Figure 1, the number of published

articles on SRM position sensorless methods is increasing. Researchers have to admit that this is a hot spot, and it

is necessary to analyze and review the related theories and technologies.
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Figure 1. Number of studies published before Jan. 2021 that experimentally examined the position sensorless

methods for SRM.

2. An Accurate Rotor Estimation Solution in Whole-Speed
Range

Position sensorless technology for the full speed range is an ongoing goal. Many methods demonstrate accurate

position estimation in part of the velocity range, which is also of great significance for the development of position

sensorless methods. However, this limits the practical application of the algorithm in that the motor is required to be

in the full speed range. It is necessary to seek rotor position estimation methods in a wider speed range.

3. Reduce Coupling between Position Estimation and
Control Methods

For motor motion control, current chopper control (CCC), angle position control (APC), and voltage chopper control

(VCC) are relatively mature control algorithms. Many position estimation methods are extremely dependent on

these control strategies, which is weak compared with traditional position sensors. Many new controls, such as

direct torque control (DTC) and torque sharing function (TSF) , have outstanding performance in

reducing torque ripple and vibration noise, and the current waveforms produced by these methods are completely
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different due to different control strategies . This forces the position estimation methods to be able to adapt to

these new control strategies.

4. Reduce the Need for Prior Parameter Storage

The gradual reduction of the motor a priori parameter requirements can reduce the pressure on microcontrollers

with small storage capacity. Of course, researchers also have to realize that some key motor parameters are

instructive for estimating rotor position. The validation of prior parameters restricts the application of location-free

methods to SRMs with large parameter differences. Moreover, many motor parameters may be changed by the

interference from the environment and working conditions, which is a huge risk to the long-term effectiveness of the

algorithm.

5. Smooth Switching between Different Speed Stages

The motion process of conventional SRM is mainly divided into the start-up, low-speed, and high-speed stages.

How to effectively switch between different sensorless methods is a technical point worth paying attention to .

For example, in , the pulse injection method is combined as the algorithm for the start-up phase. However, it

does not indicate how to switch.

6. High Stability under Heavy and Changing Loads

It is well known that drastic changes in load can challenge the robustness of the control algorithm. In the

experiments of some literature, it is easy to observe that the estimation accuracy will be lower than the light load

when the load is abruptly changed. How to effectively improve the accuracy of rotor position estimation is a worthy

research direction under various working conditions.

The principles of various types of sensorless methods have been introduced in detail, and their development has

been teased out. The direction of the entire sensorless development is elucidated based on the current

development direction. It is important to see what changes can be made in the future for each type of method.

Table 1 presents future applications and future developments of the various methods summarized. From a

practical application point of view, hybrid and observer-based methods enable a decoupling of speed/torque control

strategies and position estimation in the full speed range.

Table 1. Prediction of the development of existing methods.
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Methods Features of Application Future Development

Pulse injection methods Outstanding startup performance Hybrid with other methods

Additional components
methods

Similar to the novel position sensor
Smaller additional

components
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7 . Conclusions

It is found that there are many obvious constraints and potential opportunities for the sensorless technology, with

the development of advanced control theory and the in-depth study of electromagnetic signature by FEA. Besides

the requirements of efficient rotor position estimation in the whole-speed range, there are some challenging

objectives for the design of sensorless control, including high detection accuracy, high robustness, and improved

algorithm versatility. To address these constraints, some advanced control theories, such as sliding mode

observers and hybrid solutions that fuse multiple methods, are used for position estimation. Due to their excellent

suitability for modeling nonlinear characteristics, reduced dependence on motor parameters and application in a

wider speed range are expected in the future.
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