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The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, acts as

‘polymodal cellular sensor’ on primary sensory neurons where it mediates the peripheral and central processing of

pain, itch, and thermal sensation.

TRPA1  TRP channel  skin disease

1. Introduction

Transient receptor potential (TRP) channels are polymodal cation channels primarily permeable to calcium, which

work as cellular sensors implicated in many physiological functions, ranging from pure sensory activities, such as

nociception and temperature sensation, and homeostatic functions, such as osmoregulation, to many other

functions, such as muscle contraction and vasomotor control . In mammals, the superfamily of TRP channels

encompasses 28 members , behaving as non-selective cation permeable channels, and classified into six

subfamilies: The canonical or classic (TRPC1-7), vanilloid (TRPV1-6), melastatin (TRPM1-8), long TRP ankyrin (a

solitary member is the transmembrane protein 1 [TRPA1]), and the more distant relatives, polycystins (TRPP1-5)

and mucolipins (TRPML1-3) . TRPs are expressed in a wide variety of both excitable and non-excitable cells

. Most TRPs have been localized to the plasma membrane where they non-selectively allow the

influx of extracellular cations . However, their presence has been documented in cellular organelles, with a

pivotal role in establishing/maintaining vesicular calcium homeostasis and in regulating membrane trafficking .

TRPs are considered unique polymodal cell sensors, as their gating is directly operated by a plethora of exogenous

and endogenous physical stimuli and chemical mediators or by changes in the intracellular environment . As

several TRPs localized in a subset of primary sensory neurons, they result as highly implicated in sensing

physiological and noxious agents and more generally in nociceptive stimuli perception in a variety of tissues and

organs, including the skin .

Emerging evidence suggests that multiple TRPs are involved in the regulation of the cutaneous functions. Apart

from their prominent expression and role in nociceptive neurons, where they mediate the peripheral and central

processing of pain, itch, and thermal sensation , some TRPs are found in non-neuronal cells 

including skin cells , where they are critically involved in formation and maintenance of physico-chemical

skin barriers, skin cells, and organ growth and differentiation, and cutaneous immunological and inflammatory

processes.

2. TRPA1 in Skin Physiology
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2.1. Cutaneous Nerve Fibers and Neurogenic Inflammation

The skin-localized sensory afferents are involved in the neuronal processing of multiple sensory modalities. Aβ-

fibers with thickly myelinated axons, thus fast conduction velocities and low activation thresholds, are the

predominant class of fibers responsible for sensing light touch. A subpopulation of C-fibers is responsible for gentle

touch and light forces similar to Aβ-fibers . Similar low-threshold Aδ-fiber responses have been observed in

humans, but it remains to be determined if these fibers also influence touch perception . The perception of acute

noxious or painful touch are typically derived from the activation of high-threshold unmyelinated C-fibers and thinly

myelinated Aδ-fibers.

A specific subset of C-fiber and Aδ- fiber nociceptors is exclusively sensitive to the selective TRPV1 agonist,

capsaicin, the pungent ingredient in hot chili peppers, and thereby defined as ‘capsaicin-sensitive’ sensory

neurons. TRPV1-expressing neurons comprise a subgroup of neurons defined as peptidergic because of their

ability to produce neuropeptides, including the calcitonin gene-related peptide (CGRP) and tachykinins, such as

substance P (SP) and neurokinin A (NKA) , which upon peripheral release, cause inflammatory responses,

collectively referred to as “neurogenic inflammation” . TRPA1 is present in 30–50% of TRPV1-expressing

neurons and rarely exists in neurons which do not express TRPV1 .

The most prominent feature of the TRPA1 resides in its unique sensitivity for several exogenous and endogenous

agonists which, based on their structure, activate the channel covalently, or modulate its activity in a different way.

A number of naturally occurring TRPA1 agonists mainly found in alimentary sources include herbs and spices, such

as cinnamaldehyde, contained in the cinnamon oil extracted from the Cinnamomum , several isothiocyanate

compounds, such as allyl or benzyl isothiocyanate contained in mustard oil or wasabi, obtained from the Brassica

seeds , and allicin and diallyl disulfide, contained in garlic (Allium sativum) . Other rather heterogenous

substances qualified as TRPA1 channel stimulants include volatile irritants, such as acrolein and crotonaldehyde

, chemicals of industrial origin, , general anesthetics (e.g., isoflurane , lidocaine , propofol ),

and laboratory chemicals (e.g., formalin ). Additional aldehydes which stimulate TRPA1 are formaldehyde

, acetaldehyde  and crotonaldehyde  (all contained in cigarette smoke). These compounds, share a

reactive chemical structure which enables them to covalently modify specific cysteine residues located within the

cytoplasmic N-terminal region of the protein , resulting in TRPA1 activation. These features justify the large use

of these compounds to better understand the mechanism of action and the role of the channel.

Non-reactive compounds which are unable to modify the channel covalently include compounds from plant origin,

such as menthol , thymol, and carvacrol . The non-electrophilic component contained in Cannabis sativa,

delta-9-tetrahydrocannabinol (THC), also activates the TRPA1 channel without producing any covalent modification

. Different medicines or their metabolites such as clotrimazole , nifedipine , and non-steroidal anti-

inflammatory drugs, such as diclofenac  and acyl-glucuronide ibuprofen , represent an additional subgroup of

exogenous TRPA1 activators.
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The last ten years have witnessed a series of discoveries that have placed the TRPA1 channel as a major sensor

of oxidative, nitrative, and carbonylic stress for the peripheral nervous system. Reactive oxygen (ROS), nitrative

(RNS), and carbonylic (RCS) species have shown the ability to gate TRPA1 on peripheral terminals primary

sensory neurons, thereby signaling pain, and neurogenic inflammation. ROS activate TRPA1 through a cysteine

oxidation or disulfide formation , whereas RNS activate the channel through a S-nitrosylation reaction .

Among ROS, TRPA1 activators comprise hydrogen peroxide (H O ) , hypochlorite (OCl ), superoxide (O )

. Among RNS, NO , and peroxynitrite  are TRPA1 agonists. Metabolites generated by peroxidation or

nitrosylation of plasma membrane phospholipids, including 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE),

4-oxo-2-nonenal (4-ONE), and nitrooleic acid (9-OA-NO ) activate TRPA1 channels . During

inflammation cyclooxygenase induction and activation result in the release of proinflammatory and proalgesic

prostaglandings and isoprostanes, which via a non-enzymatic dehydration generate cyclopentenone prostaglandin

and isoprostane including 15-deoxy-Δ12,14-PGJ  (15-d-PGJ ), PGA  and PGA , and 8-isoprostane-PGA  are

formed. Cyclopentenone PGs and iso-PGs have been recognized as TRPA1 activators . Finally, among the

endogenously produced mediators, the malodourous gas hydrogen sulfide (H S), produced by cysteine

metabolism and endowed with vasodilatatory and other properties , has also been identified as a TRPA1

stimulant .

2.2. Keratinocytes Differentiation, Proliferation and Barrier Function

Growing evidence has revealed that TRPs are actively involved in the regulation of skin physiology 

. TRPV1 expression has been identified in epidermal and hair follicle keratinocytes, dermal mast

cells, sebaceous gland-derived sebocytes, and dendritic cells , which suggest functional roles in homeostatic

and ‘sensory’ functions not limited to cutaneous nerve fibers. TRPV2 has been found in keratinocytes  and

macrophages , and TRPV3 in blood vessels  and keratinocytes . The presence of TRPV4 has been

reported in basal and suprabasal keratinocytes of healthy human skin . Finally, TRPA1 has been found in

keratinocytes, melanocytes, and fibroblasts  (Figure 1).
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Figure 1. Role of the TRPA1 channel in skin homeostasis and skin diseases. TRPA1 channels expressed in

sensory fibers innervating the skin or in different non-neuronal cells can either contribute to maintaining normal skin

physiology or play important roles in the pathogenesis of skin diseases.

In human skin, immunoreactivity for the TRPA1 channel has been detected in both keratinocytes and melanocytes

. It was also observed that the treatment of keratinocytes with icilin, a selective TRPA1 agonist, increased the

expression of genes involved in cellular adhesion and extracellular matrix protein synthesis .

The production of the stratum corneum is one of the main roles of epidermal keratinocytes. Some studies showed

that the administration of TRPA1 activators as well as the application of cold stimuli to the skin of mice, in which the

epidermal barrier was mechanically disrupted, accelerated the rate of barrier regeneration . Conversely, the

application of a TRPA1 antagonist prevented the beneficial effects and markedly delayed the barrier healing .

Moreover, cold-induced TRPA1 activation resulted in a specific increase in intracellular calcium in human cultured

epidermal keratinocytes, much higher than that observed in dorsal root ganglion cells , thus revealing that

epidermis might be more sensitive to low temperature than the peripheral nervous system, and TRPA1 expressed

in keratinocytes may have a central role in thermo-sensation of the skin . Despite at low levels, TRPA1 mRNA

was recently detected in mouse keratinocytes, where its selective deletion caused a marked deficit in

mechanically-evoked ATP release, highlighting a possible involvement of keratinocytes in mechano-transduction

. Collectively, these findings suggest a “constitutively active” role for TRPA1 in the epidermal barrier

homeostasis. TRPA1 is activated by ultraviolet radiation (UVR) in melanocytes, where its activation by UVR non-

detrimental doses results in an early melanin synthesis . However, additional TRPs may contribute to the

formation and maintenance of the skin barrier , participate in the differentiation and growth of the skin cells ,
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and ensure immunological properties during inflammatory processes , as TRPV4 activation has been involved in

cell survival mechanisms after skin exposure to noxious heat.

3. TRPA1 in Skin Diseases

3.1. Atopic Dermatitis and Allergic Contact Dermatitis

Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are common inflammatory skin diseases characterized

by skin barrier disruption and an inflammatory response dominated by T helper 2 (Th2) cells and related products,

such as interleukin (IL)-4, IL-5, and IL-13 . Pruritus, which is characteristically histamine-independent,

represents the most troublesome symptom of both diseases, resulting in a significantly impaired patient’s quality of

life.

TRPA1 contributes to the pathogenesis of chronic  and acute histamine-independent pruritus, such as those

evoked in mice by injection of chloroquine  and the proenkephalin product, BAM8-22 . In either human

or murine AD models, TRPA1 has been shown to be significantly over-expressed by several cell types, including

keratinocytes, mast cells, and dermal sensory nerve afferents . TRPA1 expression was also enhanced in cell

bodies of dorsal root ganglion (DRG) neurons from AD-mice . In comparison, animal models of ACD revealed an

over-expression of TRPA1 only on DRG neuronal cells, while no increased channel expression has been observed

in non-neuronal skin cells .

A TRPA1-dependent pathway of itch in AD has been firstly identified by using a murine model of the disease

induced by IL-13 . In this study, IL-13 caused a chronic AD disease in mice characterized by an intensive chronic

itch and increased expression of TRPA1 in mast cells, dermal sensory nerve fibers, and cell bodies of DRG

neurons. Interestingly, mast cells recruited by IL-13 and localized in close proximity with TRPA1+ dermal afferents

promoted a TRPA1-mediated local secretion of neuropeptides. In addition, pharmacological TRPA1 blockade

selectively attenuated the itch-evoked scratching. Genetic deletion of mast cells in these mice led to significant

reduction in the itch-scratching behaviors and lowered the TRPA1 expression in dermal neuropeptide containing

afferent fibers . Altogether, these data reveal a complex interaction among TRPA1+ dermal afferent nerves and

TRPA1+ mast cells in the Th2-mediated inflammatory milieu underlying chronic itch in AD  (Figure 1).

An additional study revealed that in a different murine model of AD induced by 2,4-dinitrochlorobenzene (DNCB),

genetic deletion of TRPA1 attenuated pathological findings of AD, including ear thickness, epidermal hyperplasia

and pruritus, and dermal infiltration by mast cells, Th2 cytokines, and macrophages . Moreover, DNCB, capable

of inducing ACD in exposed humans, has been shown to directly and dose-dependently activate TRPA1 .

Likewise, in a murine model of ACD induced by topical application of oxazolone , TRPA1 deficiency correlated

with milder ACD symptoms including pruritus, and lower levels of inflammatory cytokines and T-cell activation.

More intriguingly, oxazolone has been shown to directly activate TRPA1, resulting in enhanced release of

mediators of neurogenic inflammation and pruritus, including 5-hydroxytryptamine (5-HT), SP, and NKA. In

addition, the absence of TRPA1 reduced the number of SP-responsive neurons, which are involved in the central
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transmission of pain and itch sensations. Similar results were obtained using a mouse model of ACD induced by

urushiol, the poison ivy allergen . Recently, in an oxazolone-induced murine model of ACD, the topical

application of tacrolimus induced a persistent up-regulation of TRPA1 in DRG neurons and contributed to

development of itch, thus explaining the pruritus and stinging sensation produced by the drug in humans .

Induction of skin dryness in mice has been associated with TRPA1 activation, that also correlated with changes in

the gene expression profile driving to skin hyperplasia and lichenification .

In chronic allergic itch, multiple pathways of TRPA1 activation have been shown. These include a keratinocyte-

neuron axis based on the release of thymic stromal lymphopoietin  and periostin , two AD-associated

cytokines directly released by keratinocytes, and a Th2-cell-neuronal pathway based on the release of the

pruritogenic cytokine IL-31 . Although these studies suggest a role of TRPA and many channel ligands have

been studied, yet TRPA1 blockers remain to be used clinically as anti-itch drugs. Off-target effects are a risk for

TRPA1 ligands, given TRPA1 broad expression in different neuronal and non-neuronal cellular districts, which

encompasses different biological functions. For this reason, the development of such drugs should proceed with

caution. Nevertheless, since evidence showed that the TRPA1 is crucially involved in the pathogenesis of AD and

ACD, the pharmacological inhibition of the channel could be a valuable complementary strategy for local control of

skin inflammation and pruritus observed in both diseases.

3.2. Psoriasis

Psoriasis is a common chronic inflammatory skin disease, characterized by erythema, skin thickness, and scaling

. Pruritus is observed in 60-90% of the patients . Emerging evidence has highlighted a contribution of

nociceptive sensory nerve endings in the pathogenesis of psoriasis, with a multi-faced role in detecting noxious

stimuli, promoting the activation of immune cells and modulating the immune microenvironment . Of note,

different studies showed increased C-fiber innervation in the epidermis of psoriatic skin lesions .

The altered quantity of nerve fibers was associated with the increased expression of neuropeptides including SP

and CGRP in psoriasis epidermal tissue . Elevated neuropeptide content in the plasma of patients with

psoriasis also correlated with psoriasis severity index scores . Moreover, cutaneous denervation induces a

reduction of skin inflammation in psoriasis patients and in mice with psoriasiform dermatitis .

More recently, the role of TRPA1 in psoriasis has been explored. It was originally reported that in a murine model of

imiquimod (IMQ)-induced psoriasis-like lesions, topical application of the drug was associated with elevated

expression of TRPA1 in affected skin areas . Similar results were obtained in psoriatic skin from human

subjects where TRPA1 and TRPV1 genes were over-expressed . Mechanistic studies provided contrasting

results on the role of TRPA1 in murine models of psoriasis. Pharmacological blockade or genetic deletion of TRPA1

could, in fact, worsen psoriasis dermatitis and nocifensive and itch behavior in mice, thus suggesting a protective

role for TRPA1 in psoriasis . At the molecular level, the pathology in TRPA1 deleted mice was characterized by

higher levels of inflammatory cytokines, including IL-1β, TNF-α, and IL-22 compared to wild-type mice . The

protective role for TRPA1 in psoriasis was strengthened by the observation that a 3-weeks treatment with dry food

containing mustard seed (5%) reduced IMQ inflammation in mice . Conversely, another study reported that
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TRPA1 genetic deletion sustained the dermal inflammation and the Th17-related cytokines expression in a severe

model of IMQ-induced psoriasis, which also induced a systemic inflammatory reaction in mice . As TRPA1 is

expressed by primary sensory neurons, keratinocytes, and immune cells, we can speculate that channel function is

affected by the immune environment. Collectively, these data suggested that TRPA1 activation or inhibition may

simultaneously act in a protective manner in psoriasis, arguably by regulation of the activity of TRPV1 (Figure 1).

3.3. Cutaneous T-Cell Lymphoma

Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of primary cutaneous lympho-proliferative

disorders, including mycosis fungoides (MF) and Sézary syndrome (SS) as the most common clinical presentations

. Pruritus is a debilitating symptom in patients with MF and SS . In these patients, the shift to Th2-type

immunity, with neoplastic cells producing enhanced Th2-associated cytokines, including IL-4 and IL-31, partly

explains the severity of pruritus . However, a recent study reported TRPA1 as a critical mediator involved in

CTCL-associated itch . Recent data showed that miR-711, released by neoplastic skin-resident T-cells, induced

TRPA1-dependent itch in mice by direct TRPA1 activation . Interestingly, the itching activity of miR-711 was

mediated by a short and evolutionary conserved core sequence that was both necessary and sufficient for the

TRPA1 gating. In addition, in contrast with conventional TRPA1 agonists, miR-711 did not homogeneously elicit

pain, itch, and neurogenic inflammation . Such diversity was ascribed to a different binding domain in the

extracellular portion of the protein, a shorter opening time of TRPA1, and the ensuing lower calcium permeability or

the activation of different nerve terminals afferents, which encode diverse sensory modalities. Finally, inhibition of

miR-711 activity with an extracellular complementary sequence or disruption of the miR-711/TRPA1 interaction

with a blocking peptide significantly attenuated the scratching behavior in a mouse model of CTCL. Collectively,

these data revealed an unconventional role of extracellular miRNAs as itch mediators and TRPA1 modulators and

confirmed the biological relevance of this interaction in the pathophysiology of CTCL-associated itch.

3.4. Other Pruritic Skin or Systemic Diseases

Chronic histamine-independent pruritus occurs in a wide variety of other cutaneous and systemic diseases. A

common skin disease characterized by pruritus is scabies, a contagious parasitic infestation caused by the mite

Sarcoptes scabiei hominis . In the skin of patients with scabies, non-histaminergic itching receptors, including

TRPA1, TRPV1, and the protease-activated receptor 2 (PAR2), have been found to be over-expressed .

Interestingly, increased PAR2 expression was associated with increased tryptase+ cells and reduced histamine+

cells near the dermal-epidermal junction, potentially suggesting a TRPA1/mast cell pathway similar to that

previously reported in AD  (Figure 1).

A common systemic cause of itch is that related to liver dysfunction, which in turn causes an elevation of circulating

bile acids (BA). Remarkably, one study reported the co-expression of the G-protein-coupled BA receptor 1 (TGR5)

and TRPA1 in cutaneous afferent neurons in mice . TRG5 activation by BA sensitized TRPA1 via enhanced

intracellular signaling through Gβγ, protein kinase C, and calcium in vitro. In mice over-expressing TRG5, the
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exacerbated spontaneous scratching behavior was reduced by TRPA1 antagonists, thus supporting a coactivation

of TGR5 and TRPA1 in BA induced pruritus .

A study reported TRPA1 over-expression in the epidermis of patients with bullous pemphigoid, a rare autoantibody-

mediated blistering disease characterized by intense pruritus, compared to healthy skin, but channel expression

did not significantly correlate, neither with eosinophil dermal infiltration nor with the severity of pruritus  (Figure

1).

Finally, a distinctive cause of pruritus induced by physical factors is that following burn injuries. Recently, one study

revealed that mRNA levels of TRPA1 as well as TRPV4 were increased in the skin of itching burn scars .

However, further studies are needed to identify the role of TRPA1 in burn-associated itch.
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