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Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during

pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia,

fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to

the well-being of the mother and fetus. Ca -activated K  (K ) channels of small, intermediate, and large

conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells

(VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. K

channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental

circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular

tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of

uteroplacental vascular function by K  channels is compromised in pregnancy complications.

Ca2+-activated K+ (KCa) channels  uteroplacental circulation  vascular tone

1. K  Channels

K  channels are a large family of K  channels, which are activated by intracellular Ca  and selectively transport

K  ions. K  channels contain six/seven-transmembrane domains, and are classified into two groups based on

their biophysical properties . One group includes the BK  channel that has large single-channel conductance

ranging from 100 to 300 pS  and is activated by micromolar [Ca ]  and membrane depolarization . The

other group comprises small-conductance (SK ) (K 2.1–2.3) and intermediate-conductance (IK , K 3.1) K

channels that are voltage-insensitive and are activated by sub-micromolar [Ca ] . The SK  channel has single-

channel conductance of 5–20 pS , whereas the IK  channel has unitary conductance of 20–40 pS .

A functional BK  channel is composed of a tetramer of α-subunit that is encoded by the KCNMA1 gene. The BK

channel achieves its functional diversity primarily through the association of α subunits with accessory subunits

and other proteins, alternative splicing, and post-translational modifications such as phosphorylation, oxidation, and

palmitoylation . Each BK  channel α subunit (125–140 kDa) contains seven transmembrane

spanning segments (S0–S6) and a large cytoplasmic COOH-terminus. They form three main structural domains

that serve distinct functions . S1-S4 segments constitute the voltage-sensing domain that detects changes in the

membrane potential. S5–S6 segments line the pore to control K  permeation . Two tandem RCK (regulator of

conductance for K ) domains (RCK1 and RCK2) in the cytoplasmic COOH-terminus from each subunit form a Ca

gating ring and function as a Ca  sensor .
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The BK  channel is ubiquitously distributed among mammalian tissues  and usually associates with auxiliary β-

subunits (~20 kDa). These accessory proteins are expressed in a cell-specific manner and display unique

regulatory effects on the channel. Four distinct β-subunits, β1–4, are encoded by KCNMB1-4 . The β1 subunit is

primarily expressed in smooth muscle , whereas β2, β3, and β4 subunits are mostly expressed in neurons,

chromaffin cells, kidney, heart, liver, and lung, among others . The β-subunit consists of two

transmembrane domains with intracellular N- and C-termini and a long extracellular loop. Up to four β-subunits

could co-assemble with pore-forming α subunits . Co-assembling with these auxiliary subunits alters the

channel’s apparent sensitivity to Ca  and voltage as well as kinetic properties .

A group of leucine-rich repeat-containing (LRRC) proteins (~35 kDa) are identified as auxiliary γ subunits of the

BK  channel . The expression of LRRC proteins is also tissue-dependent . These LRRC proteins are

structurally distinct from the β-subunit. They consist of a large, extracellular domain with six leucine-rich repeat

units (LRR1–6), and a single transmembrane segment. In a manner similar to the β subunit, the association of γ

subunits to α subunits also alters channel gating properties by increasing voltage sensitivity even in the absence of

Ca  .

SK  channels are encoded by KCNN1-3, whereas the IK  channel is encoded by KCNN4. SK  and IK

channels share a similar topology to members of the K  channel superfamily and consist of six transmembrane

segments (S1–S6) . They are also tetrameric structures. The channel pore is formed by S5 and S6. However,

the S4 segment of SK  and IK  channels contains fewer charged residues than its counterparts in the K  and

BK  channels, resulting in a lack of voltage dependence. These channels are expressed primarily in neurons and

ECs. Although the activities of SK  and IK  channels are also controlled by intracellular Ca  levels, Ca  does

not directly bind to channels. Instead, the Ca  sensitivity of these channels is achieved through the binding of

Ca  to calmodulin (CaM) constitutively bound to the C-terminus of the channel .

2. K  Channels and Vascular Function

2.1. K  Channels in VSMCs

The BK  channel α subunit is abundantly expressed in VSMCs of virtually all vascular beds. BK  channel

accessory β and γ subunits are also found in VSMCs . The predominant β isoform in VSMCs is the β1

subunit . Although β2 and β4 subunits are also present in VSMCs of some vessels, their expression is extremely

low . The association of accessory subunits with α subunits alters channel biophysical properties. Both β1

and γ subunits increase BK  channel sensitivity to both Ca  and voltage in VSMCs .

SK  channels are scantily expressed in VSMCs . Although an apamin-sensitive K  conductance has been

demonstrated in VSMCs of some vascular beds , its identity has not been resolved. Similarly, evidence for

the existence of IK  channels in VSMCs is limited. The IK  channel is either not or very poorly expressed in

contractile VSMCs . However, its expression in VSMCs is significantly upregulated during proliferation or under

pathophysiological conditions such as myocardial infarction, vascular injury, and atherosclerosis .
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Therefore, the IK  channel likely plays a role in the angiogenesis and pathogenesis of atherosclerosis/restenosis.

However, SK  and IK  channels are found to express in VSMCs of uterine and placental chorionic plate arteries

.

2.2. K  Channels in ECs

Endothelial expression of the BK  channel appears to be erratic . Molecular expression of the BK  channel

α subunit and channel activity have been reported in the intact endothelium and in isolated ECs from some blood

vessels . However, the BK  channel is absent in ECs from other vascular beds 

. In addition, the BK  channel β1 subunit is absent in ECs . Proliferation and chronic hypoxia trigger BK

channel expression in ECs . Of interest, the BK  channel β4 subunit along with the α subunit is

expressed in rat lung microvascular ECs, forming functional BK  channels .

Both IK  and SK  channels are abundantly expressed in the endothelium . The predominant SK  and IK

channels expressed in ECs are K 2.3 (SK3) and K 3.1 (IK1) channels, respectively . It appears that SK

and IK  channels have distinct spatial localizations. Whereas K 2.3 channels are widely distributed in the EC

plasma membrane, K 3.1 channels are primarily located in myoendothelial gap junctions (MEGJs) .

2.3. K  Channels and the Regulation of Vascular Function

2.3.1. Activation of BK  Channels in VSMCs

Given the large conductance and copious expression of the BK  channel in VSMCs, small changes in the open

probability of the channel have a significant impact on the membrane potential of VSMCs and vascular tone. BK

channel activation in VSMCs is primarily linked to Ca  release events from the SR through RYRs and/or Ca

influx through Ca 1.2 channels or nonselective cation ion channels . A fraction of RYRs in the SR

membrane are in close proximity to BK  channels in the plasma membrane of VSMCs and together they form

Ca  signaling microdomains . Concerted opening of several RyRs generates Ca  sparks and the local [Ca ]

may reach ~10 μM within these microdomains . Ca  sparks then activate BK  channels to produce

spontaneous transient outward currents (STOCs), which in turn promote membrane hyperpolarization and closure

of the Ca 1.2 channel. The BK  channel β1 subunit plays a central role in linking Ca  sparks to the BK

channel. Genetic deletion of the β1 subunit decreases the Ca  sensitivity of the BK  channel, resulting in

uncoupling BK  channels from Ca  sparks . In addition, reduced expression of the BK  channel β1 subunit in

type 2 diabetic murine VSMCs leads to abnormal coupling between Ca  sparks and the BK  channel . Ca 1.2,

BK , and transient receptor potential canonical 1 (TRPC1) channels can form complexes in the plasma

membrane of VSMCs to provide an efficient mechanism for obtaining localized high Ca  concentrations to activate

the BK  channel . Additionally, TRPV4, RyRs, and BK  channels are also found to form Ca

signaling complexes to promote smooth muscle hyperpolarization . Furthermore, the generation of Ca  sparks

can be indirectly modulated by the Ca 1.2 channel  Ca 1.2 channel-mediated Ca  entry increases luminal SR

Ca  and hence Ca  sparks . Thus, the formation of Ca  microdomains/macromolecular complexes provides a

rapid feedback and elicits an efficient regulation of Ca  signaling in VSMCs.
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2.3.2. BK  Channels and Vascular Tone

VSMCs of small arteries/arterioles possess intrinsic properties to constrict in response to an increase in

intralumenal pressure and to dilate following a decrease in intralumenal pressure . An increase in intralumenal

pressure depolarizes the plasma membrane leading to the opening of the Ca 1.2 channel and

vasoconstriction/myogenic tone. However, myogenic vasoconstriction is regulated by a negative feedback

mechanism conferred by the BK  channel . Membrane depolarization promotes Ca  sparks in VSMCs. In

addition, Ca  entry through Ca 1.2 and TRPV4 channels also enhances Ca  sparks that in turn activate the BK

channel . Activation of the BK  channel in VSMCs triggers STOCs and subsequent membrane

hyperpolarization, leading to Ca 1.2 channel closure and vasodilation . Therefore, the BK  channel functions

as a ‘brake’ to prevent excessive vasoconstriction. The importance of the BK  channel in the regulation of

vascular function has been well demonstrated by pharmacological and genetic manipulations. The blockade of the

BK  channel with iberiotoxin or tetraethylammonium (TEA) induces membrane depolarization, followed by an

elevation of [Ca ] , vasoconstriction, and elevated blood pressure . Genetic ablation of the BK

channel α subunit leads to hypertension , suggesting an essential role of this channel in regulating blood

pressure and controlling blood perfusion to organs. The BK  channel β1 subunit is also vital in regulating vascular

tone. The BK  channel in VSMCs from β1 null mice has decreased Ca  sensitivity and reduced channel activity

due to uncoupling the channel from Ca  sparks. These changes result in VSMC membrane depolarization and

enhancement of vasoconstriction, which ultimately lead to the development of hypertension . Not

surprisingly, the expression of the BK  channel β1 subunit in VSMCs is reduced in hypertension in patients 

and in animal models . In contrast, a gain-of-function mutation of the BK  channel β1 subunit is

associated with a low prevalence of hypertension in human studies . In addition, the expression of the

BK  channel β1 subunit in VSMCs of rat mesenteric arteries is upregulated after hemorrhagic shock . This

upregulation enhances Ca  sensitivity of the BK  channel, promotes VSMC membrane hyperpolarization, and

reduces vasoconstriction to norepinephrine. Diabetes is also associated with suppressed expression of the BK

channel β1 subunit in VSMCs .

The BK  channel activity is fine-tuned by phosphorylation . Many vasoactive agents alter vascular

contractility via protein kinase-mediated phosphorylation of the BK  channel. Endothelin, angiotensin II, 5-

hydroxytryptamine, and 20-hydroxyeicosatetraenoic acid elicit vasoconstriction via serine/threonine kinase PKC-

and/or tyrosine kinase c-Src-mediated inhibition of the BK  channel in VSMCs . Conversely, β-

adrenergic agonists, adenosine, calcitonin gene-related peptide, and nitric oxide (NO) mainly produce

vasorelaxation via PKA- or PKG-dependent activation of the BK  channel in VSMCs .

NO can also regulate BK  channel activity in VSMCs by altering the trafficking of the BK  channel β1 subunit.

NO is found to stimulate rapid surface trafficking of the BK  channel β1 subunit via cGMP-PKG- and cAMP-PKA-

dependent pathways, resulting in increased channel Ca  sensitivity/channel activity, and vasodilation .

Moreover, NO is able to directly activate the BK  channel in VSMCs .

2.3.3. Activation of SK  and IK  Channels in ECs
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The vascular endothelium plays a key role in regulating vascular tone. Activation of SK  and IK  channels is an

essential process for endothelium-dependent vasorelaxation conferred by various vasoactive agents 

. Endothelium-dependent vasodilators and physical stimuli such as fluid shear stress increase [Ca ]  in

ECs by triggering IP R-mediated Ca  release from SR, store-operated Ca  entry, and TRPV4-mediated Ca

influx . Ca  subsequently binds to calmodulin constitutively bound to SK  and IK  channels, resulting in

channel conformational changes and channel activation .

2.3.4. SK  and IK  Channels and Vascular Tone

Opening endothelial SK  and IK  channels induces hyperpolarization, which could be transmitted to adjacent

VSMCs via MEGJ, leading to hyperpolarization of VSMCs, closure of the Ca 1.2 channel, and subsequent

vasodilation (Figure 2) . In addition, K  ion accumulated in the extracellular space between ECs and

VSMCs due to activation of endothelial SK  and IK  channels is proposed to cause hyperpolarization and

relaxation of the VSMCs through activating the inwardly-rectifying K  (K ) channel and/or the Na -K -ATPase 

. Furthermore, both SK  and IK  channels also participate in regulating NO synthesis and release from ECs

. The blockade of the SK  channel with apamin and of the IK  channel with charybdotoxin or

triarylmethane-34 (TRAM-34) attenuates NO production in ECs . Activation of endothelial SK  and IK

channels also promotes the release of endothelium-derived hyperpolarizing factor (EDHF) . Depending on the

size of the vessels, different mechanisms may be involved in the actions of SK  and IK  channels. Activating

endothelial SK  and IK  channels causes vasorelaxation mainly via the release of NO in large arteries and

EDHFs in small arteries, respectively . NO and EDHFs released from ECs subsequently trigger BK

channel activation in VSMCs, leading to vasorelaxation . Pharmacologic blockade or genetic

ablation of SK  and/or IK  channels depolarizes ECs and decreases vasoactive agent-evoked hyperpolarization

of ECs and VSMCs, resulting in impaired vasorelaxation and reduced blood flow .

Conversely, SK  and IK  channel activation decreases vascular tone/blood pressure and increases blood flow

. The functional importance of SK  and IK  channels is furthermore supported by

observations that deletion of either or both SK  and IK  genes is associated with the development of

hypertension . Consistent with these findings, the expression of SK 2.3 and/or IK  channels was

reduced in mesenteric arteries from spontaneously or ANG II-induced hypertensive rats . However, the IK

channel is upregulated under certain pathophysiological conditions such as myocardial infarction, and

atherosclerosis . In addition, the expression of SK 2.3 and IK  channels is differently altered by

chronic hypoxia in pulmonary arteries. Exposure to chronic hypoxia causes upregulation of the SK 2.3 channel,

but downregulation of the IK  channel .

3. Adaptation/Maladaptation of the Uteroplacental Circulation
in Normal Pregnancy and Pregnancy Complications

In a nonpregnant state, blood flow to the uterus is relatively low. For example, uterine blood flow is ~20–50 mL/min

in nonpregnant humans and sheep, corresponding to 1–3% of the maternal cardiac output .

Uteroplacental blood flow increases dramatically during pregnancy, rising to 600 to 1000 mL/min at 36 to 38 weeks
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in human pregnancy  and >1000 mL/min in late sheep pregnancy . Similarly, uteroplacental

blood flow increases by 10- to 30-fold in near-term pregnant rats and guinea pigs . Uteroplacental blood

flow comprises ~20% of maternal cardiac output at term . It is estimated that 80% to 90% of total

uteroplacental blood flow perfuses the placenta at term and the remaining supplies the myometrium ,

providing sufficient nutrient and oxygen supply for the growth of the placenta and fetus. The hemodynamic

changes in the uteroplacental circulation during pregnancy are primarily achieved by uterine vascular remodeling,

reduced uteroplacental vascular resistance, and the formation of the placenta . Notably, a

variety of functional changes contribute to the adaptation. Myogenic tone is markedly attenuated in the uterine

arteries of pregnant sheep . Vasopressor response of uterine arteries to various vasoconstrictors such as α-

adrenergic agonists, 5-hydroxytryptamine, endothelin 1, angiotensin II, and thromboxane is attenuated during

pregnancy in humans and other species . Moreover, the production of

vasodilators including NO and EDHF in uterine arteries increases during pregnancy . NO- and endothelium-

dependent vasodilation in uterine arteries is also enhanced during pregnancy .

The adaptation of the uteroplacental circulation is compromised in preeclampsia, FGR, and gestational diabetes.

Preeclampsia is associated with increased uteroplacental vascular resistance . Uterine arteries from

preeclamptic women and animal models of preeclampsia display enhanced vasoconstriction and blunted

vasodilation to vasoactive agents . In addition, shear stress-mediated NO release from

uterine arterial endothelium is impaired in preeclampsia . EDHF-mediated vasorelaxation of myometrial arteries

is reduced in preeclampsia . In a rat model of preeclampsia produced by reduced uterine perfusion

pressure (RUPP) in pregnant animals, uterine arteries exhibit increased myogenic tone and decreased

endothelium-dependent vasorelaxation . Additionally, the refractoriness to angiotensin II in uterine arteries is

lost in gestational hypertension . Uteroplacental vascular resistance is increased in a mouse model of

gestational diabetes . Endothelium-dependent vasorelaxation is impaired in the myometrial arteries of women

with diabetes . As expected, uteroplacental blood flow is reduced in preeclampsia, FGR, and gestational

diabetes .

4. K  Channels and the Uteroplacental Circulation in Normal
Pregnancy

4.1. K  Channels in Uteroplacental Vasculature

Both real-time polymerase chain reaction (RT-PCR) and Western blot reveal the expression of BK  channel α, β1,

and β2 subunits in the uterine arteries of humans and sheep . The β1 subunit is the

predominant β isoform in uterine arteries, and the expression level of the β2 subunit is low. Immunohistochemistry

further reveals that these BK  channel subunits are located in VSMCs, but not in the endothelium, of uterine

arteries . The BK  channel in VSMCs of uterine arteries is activated by an increase in [Ca ] , and

has unitary conductance of 100–200 pS . The BK  channel γ subunit is also detected in both human and

mouse uterine arteries . SK  and IK  channels are also expressed in uterine arteries . IK  channel

mRNA is detected in cultured human uterine microvascular ECs . Both SK  and IK  channels have been
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visualized in the endothelium of human and sheep uterine arteries with immunohistochemistry . Of interest,

K 2.2 and K 2.3 channels are present in VSMCs of sheep uterine arteries . BK , IK , and K 2.3 channels

are also detected in VSMCs and/or ECs of placental chorionic plate arteries of pregnant women .

4.2. K  Channels in the Adaptation of the Uteroplacental Circulation in Normal
Pregnancy

4.2.1. Estrogen as a Key Determinant of K  Channel Upregulation

The expression of K  channels in uteroplacental vessels is under the influence of estrogen during the ovarian

cycle and pregnancy. Khan et al. demonstrate that the BK  channel α subunit protein in ovine uterine arteries

remains constant during both follicular and luteal phases of the ovarian cycle . The protein level of the BK

channel β1 subunit is higher in uterine arteries from follicular phase ewes than in vessels from luteal phase

animals. Similarly, protein abundance of the BK  channel α subunit in uterine arteries is negligibly affected by

gestation, whereas the expression of the BK  channel β1 subunit is upregulated in uterine arteries from pregnant

sheep . The upregulation of the BK  channel β1 subunit expression in uterine arteries during the follicular

phase of the ovarian cycle and during pregnancy is paralleling with elevated plasma estrogen levels .

Remarkably, prolonged treatment of nonpregnant sheep or isolated uterine arteries from nonpregnant animals with

17β-estradiol increases the BK  channel β1 subunit expression in the uterine vasculature, resembling those

changes that occurred during the ovarian cycle and gestation . Similarly, estrogen treatment and

pregnancy also increase BK  channel β1 subunit expression in rat uterus . These observations implicate

estrogen as an initiator for the upregulation of BK  channel expression in the uterus and its vascular beds in

pregnancy. The expression of the BK  channel β2 subunit in uterine arteries remains low and unchanged during

pregnancy . The increased expression of the BK  channel β1 subunit alters channel stoichiometry and

increases Ca  sensitivity. In addition, pregnancy and prolonged treatment of nonpregnant sheep with 17β-

estradiol also upregulate the expression of NOS, PKG-1α, and cGMP in uterine arteries . The

upregulation of the NO-cGMP-cPKG pathway could stimulate the BK  channel through phosphorylation . The

enhanced BK  channel activity subsequently contributes to reduced uterine vascular resistance .

Pregnancy also upregulates SK  channel expression in uterine arteries . This upregulation is also simulated by

ex vivo estrogen treatment of isolated uterine arteries from nonpregnant sheep. The expression of K 2.3 and IK

channels in the aorta is increased in pregnant mice . Similarly, estrogen replacement in ovariectomized rats

increases the K 2.3 channel expression in the uterus and nonvascular smooth muscle . In contrast,

ovariectomy reduces K 2.3 channel activity and endothelium-dependent vasorelaxation in mouse mesenteric

arteries . Likewise, incubating human uterine microvascular ECs with high concentrations of estrogen or serum

from normal pregnant women promotes SK 2.3 and IK  channel expression . Moreover, the treatment with

serum from normal pregnant women increases plasma membrane abundance of SK 2.3 and IK  channels in

human uterine microvascular ECs . As expected, estrogen replacement in ovariectomized rats enhances

EDHF-mediated vasodilation of uterine arteries . However, estrogen replacement in ovariectomized mice

reduces K 2.3 channel expression in the uterus .
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4.2.2. Mechanisms Underlying Estrogen-Mediated K  Channel Upregulation

Estrogen usually regulates gene expression via interacting with its classical receptors, ERα and ERβ. The binding

of estrogen results in conformational changes of estrogen receptors, allowing these receptors to interact with

estrogen response elements (EREs) in the promoter region of target genes to regulate transcription . However,

examination of the cloned ovine KCNMB1 promoter sequences reveals that this promoter contains no EREs .

Instead, ERα interacts with Sp1 and binds to Sp1 binding sites to regulate KCNMB1 expression in ovine uterine

arteries. Several putative transcription factor binding sites, containing CpG dinucleotides in or near their core

binding sequences, have been identified in ovine KCNMB1 promoter, including Sp1 at −380 and AP1 at −652,

−879, and −1202. Among these sites, the Sp1  binding element is essential for ovine KCNMB1 gene expression

as deletion of this site significantly decreases the KCNMB1 promoter activity . The importance of Sp1 in the

regulation of expression of KCNMB1 is also demonstrated in nonvascular smooth muscle. Overexpression of Sp1

in smooth muscle cells of rabbit sphincter of Oddi enhances KCNMB1 promoter activity .

DNA methylation, the covalent addition of a methyl group (-CH3) to the base cytosine in the dinucleotide 5′-CpG-3′

catalyzed by DNA methyltransferases (DNMTs), is an important epigenetic mechanism controlling gene expression

. DNA methylation is usually associated with gene repression. CpG dinucleotides of the Sp1 binding site at the

KCNMB1 gene promoter are highly methylated in the uterine arteries of nonpregnant sheep, resulting in low

transcription factor binding and KCNMB1 promoter activity. Ten-eleven translocation methylcytosine dioxygenases

(TETs) catalyze the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in active DNA

demethylation. Pregnancy via estrogen upregulates TET1 which in turn decreases CpG methylation at the Sp1

binding site and facilitates Sp1/ERα binding to the Sp1 binding site of KCNMB1, leading to the upregulation of the

BK  channel β1 subunit in uterine arteries .

The increased SK  channel expression in uterine arteries during pregnancy is also mediated by estrogen .

Estrogen regulates SK 2.3 gene (KCNN3) expression through interactions between ERα and Sp1 in Cos7 and L6

cells . Moreover, estrogen treatment stimulates the expression of the SK 2.3 transcript in human myometrial

cells overexpressing Sp1 . These observations suggest an important role of Sp1 in the expression of the

KCNN3 gene.

Vascular endothelial growth factor (VEGF) appears to play role in the pregnancy-induced upregulation of SK 2.3

and IK  channels. The upregulation of SK 2.3 and IK  channels induced by exposure to serum from normal

pregnant women in cultured human uterine microvascular ECs is diminished by blocking VEGF receptors .

Serum from normal pregnant women and VEGF increases H O  generation and promote SK 2.3 and IK

channel expression via the H O /FYN/ERK pathway . VEGF receptor activation also causes the

downregulation of caveolin-1 and subsequently inhibits the internalization of SK 2.3 and IK  channels, leading to

their high abundance in the plasma membrane in uterine vascular ECs in pregnancy . It should be noted that

placental VEGF expression is also subject to regulation by estrogen in pregnancy .

4.2.3. K  Channels and the Adaptation of the Uteroplacental Circulation
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Findings from in vivo and in vitro studies exploring the functional roles of K  channels in the uterine circulation of

nonpregnant sheep are quite intriguing. Despite the expression of the BK  channel in uterine arteries of

nonpregnant animals, stimulation of the BK  channel with NS 1619 fails to promote vasorelaxation of these

vessels . In addition, the blockade of the BK  channel with TEA also does not alter the myogenic tone of

uterine arteries . Moreover, basal uterine blood flow in nonpregnant sheep is negligibly altered by local infusion

of TEA . These findings suggest that the BK  channel in the uterine arteries of nonpregnant sheep is

quiescent and contributes minimally to the regulation of uterine vascular tone, vascular reactivity, and basal uterine

blood flow. Interestingly, pregnancy ‘awakes’ the BK  channel and the channel becomes active in ovine uterine

arteries. Activation of the BK  channel promotes vasorelaxation of uterine arteries from pregnant sheep ,

whereas inhibition of the BK  channel increases the myogenic tone of uterine arteries . Moreover, local

infusion of TEA into uterine arteries decreases basal uterine blood flow by ~50% in pregnant sheep .

It is currently unknown why the BK  channel is dormant in the uterine arteries of nonpregnant sheep. One

possible explanation is the low abundance of the channel in uterine arteries. The other scenario is that the majority

of the BK  channel β1 subunit in uterine arteries of nonpregnant sheep are in the cytoplasm and do not form

complexes with the α subunit at the surface membrane as observed in rat mesenteric and human cerebral arteries

. Leo et al.  demonstrate that NO stimulates rapid trafficking of the BK  channel β1 subunit to the plasma

membrane via a PKG-dependent pathway. Pregnancy is accompanied by parallel increases in NO, cGMP, protein

kinase G-1α and the BK  channel β1 subunit in uterine arteries .

BK  channel activity is subject to modulation by protein kinases . Activation of protein kinase C inhibits the

BK  channel in uterine arteries . Thus, vasoconstriction induced by α-adrenergic ligands and thromboxane

may involve PKC-mediated inhibition of the BK  channel in this vessel . Notably, PKC activity in uterine

arteries is suppressed in pregnancy . On the other hand, the production of vasodilators such as NO,

calcitonin gene-related peptide, and adrenomedullin is increased in pregnancy and they produce vasorelaxation of

uterine arteries apparently via cGMP-mediated activation of the BK  channel . Inhibition of the BK

channel enhances uterine vasoconstriction induced by α-adrenergic ligands, thromboxane, and PKC activator in

intact sheep and in isolated vessels . Therefore, activation of the BK  channel could offset

vasoconstriction and prevents vasospasm of uterine arteries, which probably contributes to the refractoriness of

uterine arteries to vasoconstrictors during normal pregnancy.

In VSMCs, the BK  channel is primarily activated by Ca  sparks mediated by RyRs . Activated BK

channels then mediate K  efflux in the form of STOCs, leading to membrane hyperpolarization, Ca 1.2 channel

closure, and vasorelaxation.

NO and hydrogen sulfide (H S) are recognized as important regulators of vascular function. Pregnancy increases

NO and H S production in both human and sheep uterine arteries, which contributes to estrogen-induced uterine

vasodilation in pregnancy . NO is a potent stimulator of the BK  channel in VSMCs . It is

expected that NO also triggers BK  activation in uterine arteries to promote vasodilation in pregnancy as there is

a parallel increase in both the production of NO and cGMP and expression of the BK  channel in uterine arteries
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during pregnancy . A recent study reveals that H S elicits vasodilation of uterine arteries via activating

the BK  channel .

EDHF plays an important role in regulating uterine vascular contractility during pregnancy . Endothelial

SK 2.3 and IK  channels mediate endothelial membrane hyperpolarization and participate in EDHF-mediated

vasodilator response . Pregnancy significantly potentiates EDHF-mediated vasodilation of uterine arteries

. For example, EDHF contributes to ~30% of endothelium-dependent vasorelaxation of uterine arteries in

nonpregnant rats and this fraction increases to ~70% in pregnant animals . A combination of apamin plus

charybdotoxin or TRAM 34, but not of apamin plus the BK  channel blocker iberiotoxin, abolished the EDHF-

mediated dilation of human and rat uterine arteries, suggesting that SK  and IK  channels are major mediators

of EDHF responses in uterine arteries . MEGJs provide direct contact between the ECs and VSMCs.

MEGJs are the primary pathway of EDHF-mediated relaxation of myometrial arteries in pregnancy . The SK

channel may also mediate NO-induced relaxation of uterine arteries . In addition, the SK  channel in uterine

VSMCs participates in regulating the myogenic tone of uterine arteries .

The SK 2.3 and IK  channels also participate in uteroplacental angiogenesis and vascular remodeling during

pregnancy. Inhibiting SK 2.3 and IK  channels in HUVECs with apamin and TRAM 34, respectively, inhibits the

secretion of angiogenic factors, proliferation/migration, and tube formation . On the other hand, overexpression

of the SK 2.3 channel increases the diameter of uterine arteries . Similarly, SK 2.3 channel overexpression

also increases the ratio of VEGF to sFlt-1 and vessel size/numbers in the placenta .

5. K  Channels and Uteroplacental Circulation in Pregnancy
Complications

5.1. Aberrant Expression/Function of Uteroplacental Vascular K  in Pregnancy
Complications

The expression of the BK  channel β1 subunit is repressed in human placental chorionic plate arteries in

preeclampsia, which is associated with impaired NO-induced vasodilation . In addition, preeclampsia also

reduces the expression of the BK  channel β1 subunit in umbilical vein ECs . In a sheep model of

preeclampsia, it is found that high-altitude acclimatization downregulates the BK  channel β1 subunit in uterine

arteries leading to increased uterine vascular tone . The expression of the BK  channel β1 subunit is also

downregulated in the uterine arteries of a mouse model of preeclampsia induced by electrical stimulation, leading

to increased uteroplacental vascular resistance .

Both SK  and IK  channels are downregulated in human placental chorionic plate arteries in preeclampsia .

The IK  channel is also downregulated in ECs of the umbilical artery and vein from preeclamptic pregnancy 

. The contribution of MEGJs to EDHF-induced relaxation of myometrial arteries is diminished in preeclampsia

. Treating cultured HUVECs with plasma from preeclamptic women mimics the impacts of preeclampsia on IK

channel expression . An increase in circulating testosterone level is an important risk factor for preeclampsia
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. In a rat model of preeclampsia/FGR, elevated levels of plasma testosterone result in FGR . Uterine

arteries from pregnant rats chronically treated with testosterone display augmented vasoconstriction to

thromboxane, phenylephrine, and angiotensin II. In addition, the prolonged testosterone treatment also

downregulates the SK 2.3 channel in uterine arteries, leading to diminished EDHF-mediated relaxation . In

pregnant guinea pigs, chronic hypoxia attenuates EDHF-mediated relaxation of uterine arteries , possibly due

to impaired SK /IK  channel expression/function.

Gestational diabetes is associated with the downregulation of both BK  channel α and β1 subunits in human

umbilical arterial smooth muscle cells . Using a rat model in which gestational diabetes is induced by the

injection of streptozotocin during pregnancy, Gokina’s group demonstrates that EDHF-induced uteroplacental

vasodilation is impaired owing to reduced basal and agonist-stimulated [Ca ]  in ECs . Moreover, they also

provide evidence that diabetes selectively causes dysfunction of the IK  channel in uteroplacental arteries, which

attributes to the impaired EDHF response . Likewise, EDHF-induced vasorelaxation is reduced in uterine

arteries of streptozotocin-treated pregnant mice .

5.2. Mechanisms Underlying the Dysregulation of K  Channels in the
Uteroplacental Circulation

5.2.1. Hypoxia and HIFs

Hypoxia during gestation is a major insult to maternal cardiovascular homeostasis and complicates adaptive

changes in the uteroplacental circulation . HIFs play a crucial role in cellular (mal)adaptation in response to

hypoxia. Levels of HIF-1α increase in preeclamptic placentas, in placentas from human high-altitude pregnancy, in

uterine arteries of high-altitude acclimatized pregnant sheep, and in placentas of a hypoxic rodent model of

preeclampsia . There are complex interplays among HIFs, ROS/endoplasmic reticulum (ER) stress,

and epigenetic regulation . For example, HIF-1α is stabilized by mitochondrial ROS , whereas HIF-1α

through miR-210-induced downregulation of ISCU promotes mitochondrial ROS production . Moreover, DNMT

expression is upregulated by HIF-1α . These factors can act alone and in concert to contribute to the

pathogenesis of preeclampsia.

Gestational hypoxia attenuates the pregnancy-induced rise in uteroplacental blood flow, leading to increased

incidence of preeclampsia and IUGR . K  channels in vascular beds are major targets of

hypoxia . Gestational hypoxia directly downregulates the BK  channel β1 subunit and suppresses the

upregulation of the BK  channel β1 subunit and SK  channels in ovine uterine arteries during pregnancy .

The attenuated expression of K  channels culminates in decreased channel activities, leading to increased

myogenic tone and diminished K  channel-mediated vasorelaxation.

5.2.2. Epigenetic Regulation

MicroRNAs (miRs) are non-coding RNAs and play important roles in regulating gene expression. miRs regulate

gene expression by interacting with the 3′-untranslated region (3′-UTR) of target mRNAs to induce mRNA
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degradation and translational repression . Circulating and uteroplacental levels of miR-210, a target of HIF-1α,

are increased in preeclampsia, in high-altitude pregnancy, and in a high-altitude hypoxic sheep model of

preeclampsia . KCNMB1 and RYR2 each contain a miR-210 complementary binding site in their

3′-UTRs and both of them are targets of miR-210 . Indeed, gestational hypoxia via miR-210-mediated

downregulation of RyR2 and BK  channel β1 subunit disrupts the Ca  spark-STOC coupling in uterine arteries

and hence increases uterine arterial myogenic tone .

The dynamic of DNA methylation and demethylation is also an important epigenetic mechanism to fine-tune gene

expression. DNA methylation catalyzed by a family of DNMTs transfers a methyl group from S-adenyl methionine to

the cytosine residue in a CpG dinucleotide(s) to form 5-methylcytosine (5mC). In general, methylation in the

promoter regions of genes is associated with the repression of transcription . On the other hand, active DNA

demethylation is initiated by TETs which mediate the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), thus

reviving gene transcription . Gestational hypoxia is found to upregulate DNMT3b in uterine arteries, hence

enhancing DNA methylation . TET1 is also a target of miR-210 and gestational hypoxia via miR-210 triggers the

downregulation of TET1 in uterine arteries . TET1 deficiency nullifies pregnancy-induced DNA

demethylation . Overall, these changes lead to hypermethylation of KCNMB1, downregulation of the

BK  channel β1 subunit in uterine arteries, and increased myogenic tone . Gestational hypoxia also

suppresses the expression of ERα in uterine arteries through hypermethylating the Erα-encoding gene ESR1,

which could in turn impairs pregnancy- and estrogen-induced BK  channel β1 subunit upregulation .

5.2.3. Oxidative/ER Stress

Pregnancy complications are in a state of exaggerated oxidative stress . Reactive oxygen species (ROS) have

been implicated in the pathogenesis of various cardiovascular disorders. Mitochondria and NADPH oxidases

(NOX) are major sources of ROS in the vasculature . Preeclampsia and gestational hypoxia are found to

increase the expression/activity of NOX2 and ROS in the uterine arteries of pregnant sheep and HUVECs .

Mitochondrial ROS are increased in the placenta of a rat model of preeclampsia produced by reduced uterine

perfusion pressure . Likewise, gestational hypoxia also increases mitochondrial ROS via miR-210-mediated

downregulation of ISCU and subsequent perturbation of mitochondrial respiration in uterine arteries . ROS

could exert its impacts on K  channels directly or indirectly. Cys911 oxidation in the BK  channel α subunit

decreases Ca  sensitivity and impairs channel function . Acute inhibition of ROS with apocynin (a NOX

inhibitor) or N-acetylcysteine/EUK-134 (antioxidants) increases BK  channel activity in uterine arterial VSMCs of

pregnant sheep experiencing gestational hypoxia , suggesting that the BK  channel in uterine arteries

is tonically inhibited by ROS under hypoxia. Moreover, antioxidant treatment with N-acetylcysteine in ex vivo

studies restores the capacity of estrogen to stimulate molecular and functional expression of the BK  channel β1

subunit . These findings suggest that gestational hypoxia-induced oxidative stress also impairs BK

channel function by suppressing estrogen-induced KCNMB1 expression in uterine arteries. The Ca  spark-STOC

coupling is disrupted by mitochondrial ROS, leading to increased myogenic tone. ROS derived from NOX2 also

repress the expression of the BK  channel β1 subunit in HUVECs from preeclamptic pregnancy . Impaired

uteroplacental perfusion in mice with gestational diabetes is associated with elevated oxidative stress in uterine
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arteries . Although the impact of ROS on BK  channel expression/function is not examined in uteroplacental

VSMCs of gestational diabetes, NOX-derived ROS have been shown to mediate the downregulation of the BK

channel β1 subunit in VSMCs of other vascular beds in diabetic mice .

The expression of the SK  channel is downregulated by NOX2-derived ROS in umbilical vessels and HUVECs

from preeclamptic pregnancy . This downregulation is imitated by treating HUVECs with serum from women

with preeclampsia, oxidized low-density lipoprotein, palmitic acid, and the superoxide donor xanthine/xanthine

oxidase mixture . Similarly, exogenous H O  suppresses the expression of IK  and/or SK  channels in

cultured HUVECs . In human uterine microvascular ECs, NOX4-derived superoxide mediates the

downregulation of K 2.3 and K 3.1 channels induced by serum from preeclamptic women . In addition,

NOX4-derived ROS also promote the internalization of K 2.3 and K 3.1 channels by increasing the association

of these channels with caveolin-1, clathrin, and Rab5c in human uterine microvascular ECs . Testosterone

suppresses mitochondrial respiration in uteroplacental and vascular cells . Thus, the downregulation of the

SK  channel in uterine arteries of pregnant rats chronically treated with testosterone is probably mediated by

mitochondrial ROS . Chronic administration of Mito-Tempo in diabetic mice also normalizes the impaired SK

activity in heart ECs .

Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed. Placentas from preeclamptic

pregnancy, FGR, and diabetic pregnancy undergo ER stress . Gestational hypoxia also triggers ER

stress and activates unfolded protein response (UPR) in the human placenta and in ovine uterine arteries .

The ER stress inhibitor tauroursodeoxycholic acid and PERK inhibitor GSK2606414 relieve hypoxia-mediated

suppression of Ca  sparks/STOCs and decrease myogenic tone in uterine arteries . ER stress is found to

cause downregulation of the BK  channel β1 subunit and suppression of BK  channel activity in VSMCs .

Similarly, SK 2.3 and IK  channel activities are also suppressed by ER stress in ECs . Thus, ER stress also

contributes to the maladaptation of the uteroplacental circulation by impairing K  expression/function in pregnancy

complications.

5.2.4. PKC

Preeclamptic serum increases PKC signaling in cultured HUVECs . Gestational hypoxia upregulates PKC

in the uterine arteries of pregnant sheep . Activation of PKC inhibits BK  channel activity and increases

myogenic tone in the uterine arteries of pregnant sheep . This mechanism also contributes to gestational

hypoxia-induced suppression of SK  channel activity . Peroxisome proliferator-activated receptor-γ (PPARγ), a

ligand-activated transcription factor, has been implicated in the pathogenesis of preeclampsia . Mesenteric

arteries from transgenic mice expressing dominant-negative mutant PPARγ displays increased myogenic tone, due

to PKC-mediated inhibition of the BK  channel in VSMCs . Similarly, chronic inhibition of PPARγ during rat

pregnancy attenuates uterine vasodilation and causes FGR . Moreover, elevated expression of PKCβ in

diabetic mouse aortas promotes the BK  channel β1 subunit downregulation by impairing AKT signaling .
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