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Despite the recent initiatives and developments in building design provisions using performance-based design,
practicing engineers frequently adopt force-based design approaches, irrespective of the structural system or
building irregularity. Modern seismic building codes adopt the concept of simplifying the complex nonlinear
response of a structure under seismic loading to an equivalent linear response through elastic analytical
procedures using seismic design response factors. Nevertheless, code-recommended seismic design response

factors may not result in a cost-effective design with a uniform margin of safety for different structural systems.

multi-story buildings structural systems seismic response factors design codes

| 1. Introduction

Rapid urbanization in major metropolitan areas around the globe has witnessed scarcity and a high cost of land,
giving rise to a remarkable increase in the number of multi-story building constructions. These multi-story buildings,
if not acceptably designed, can be under significant threat from natural hazards that can cause potential damage to
the structures, resulting in substantial economic losses. Lateral loads, particularly in wind- or earthquake-prone
regions, usually govern the design of a multi-story building. Inelastic analysis is required to capture the seismic
behavior realistically since buildings are expected to experience large deformations under the design of an
earthquake. Practicing engineers adopt elastic analysis methods in the design of structures instead of nonlinear
analysis, either due to economic reasons or a lack of required knowledge to utilize nonlinear analysis procedures.
The inelastic response of a structure is accounted for in the elastic analysis methods by reducing seismic forces
and amplifying deformations to arrive at safe designs with optimized costs. Thus, seismic design response factors

play an essential part in the safety and economy of structures.

Seismic response factors prescribed in various design codes and guidelines covering different regions, structural
systems, and constructional practices may not provide cost-effective designs for different structures and seismic
zones with a uniform margin of safety LIZIBI4IBIE Accurately calibrating these factors optimizes the seismic design
forces, reducing costs for the overall structural system without compromising structural safety. This highlights the
need for verifying the code-provided seismic design response factors of multi-story buildings with various structural

systems using well-founded assessment methodologies.

| 2. Seismic Design Response Factors
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The seismic design forces of structures are derived in design codes by reducing the anticipated elastic seismic
forces with a force reduction factor. The factors used to reduce seismic forces and amplify deformations to arrive at
a safe design with optimized cost are termed seismic design response factors. Seismic design response factors
may be based on engineering judgment and have a limited analytical basis [l. The values of these seismic design
factors adopted in seismic design codes do not provide uniform safety margins covering various structural systems,
although they dictate the performance of buildings and the seismic design process. This presses the need for the
proper selection of appropriate values of the seismic design factors for building structures, which has been a
debatable issue in the development of seismic design provisions and highlighted in several previous studies. The
shortcomings in seismic design factors are particularly evident at various performance levels and under bi-
directional input ground motions [EIRILY  Hence, the accurate evaluation of seismic design factors and the
interrelationships between the different design parameters are essential components in the seismic design of multi-

story buildings.

The reserve strength and the ductility levels in a structure are utilized to reduce the seismic forces through the
response modification factor LIZEBI4IEIEl | ateral load-resisting systems are designed to be deflection-controlled
and possess adequate inelastic deformation capacity. The ductile detailing is essential to ensure that the
components of these systems achieve a desirable behavior. Some previous studies highlighted the significance of
redundancy in the structure to the seismic design response factors LH2I13I14] Figyre 1 illustrates a typical lateral
force—deformation relationship defining the components of seismic response factors, including the response
modification factor (R), ductility reduction factor (R,), deflection amplification factor (C,), and structural overstrength
factor (Q,), as recommended in various building codes W2, The values of the R, Cy, and Q, factors depend on the

structural system and material.
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Figure 1. Seismic design coefficients and their inter-relationship.

2.1. Historical Perspective of Seismic Response Factors

The evolution of seismic-resistant designed buildings can be traced several decades after the San Francisco
earthquake of 1906 and classified into three phases 1216l The first phase adopted the application of the
prescribed percentage of building weight as an applied load to the structure 7. This was published under the first
seismic code provisions of the Uniform Building Code (UBC) presented by SEAOC in 1927. The second phase
used the concept of the seismic base shear (V) related to zone factor (2), building system type (K), building period
(C), and building weight (W) (28], The response modification factor was introduced under this phase for the first time
in the late 1970s to calculate the design base shear (V) of the structure by reducing the elastic base shear (V)
with the reduction factor (R) using 5% damped acceleration for different systems. The present phase, also defined
as the third phase, is based on applying the equivalent lateral force on the structure and employing spectral
acceleration maps representing the site seismicity, importance factors, the natural building period, factors affecting
the site, and the response modification factors (121,

2.2. Seismic Response Factors in Various Codes
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Seismic design factors serve a similar function in all seismic design codes. These factors introduced in the seismic
codes are denoted in different terms and assigned different numerical values. Brief comparisons of these factors
practiced in various seismic codes are summarized in Table 1.

Table 1. Comparison of seismic design coefficients.

Deflection Amplification

Seismic Applicable Response Deflection Factor]
Provisions ggg::;':}ll Mogg(lgztrlon Amgggf:rtlon Response Modification
Factor
ASCE 7-22 U.S. and other
(2022) 29 s R Cq 0.50-1.00
Eurocode 8
(2004) 4 Europe q° q Loo*
NZS 1170.4
(2016) 21 New Zealand Ml u 1.00°¢
NBCC (2020) [22 Canada RdJIRo R4IRo
MCBC (2015) (8] Mexico (o)t Q 1.00°¢
UBC
UBC (1994) [
( ) IR Rw (0.375)Ry, 0.375
UBC (1997) 24! countries R 0.7R 0.70

Refepretycesat T = 0 s and is period-dependent in the short period range.  does not reduce to 1.0 at T=0's

and is period-dependent in the 0.45-0.7 s range. ¢ greater than 1.0 in the short period range.
1. Quantification of Building Seismic Performance Factors; FEMA P695; Federal Emergency

apagement Agenc ashington, DC, USA, 2009.
I é:/l R?IEtT\Oég O¥ KISSE smg eismic Response Factors
2. NEHRP Recommended Seismic Provisions for New Buildings and Other Structures; FEMA P-

3.1.0Single Degreaof BEegamy(SDORsSystemsC Asseszsing Demanids. 388.
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5. ASCE. Minimum De5|%n Loads for Buildings and Other Structures ASCE7-16; American Society

and long period (>1 s) were considered in the study. Newmark and Hall established a relat|onsh|p with the R, factor
of Civil Englneers Reston, Virginia, USA, 2016; Op

and verified it as a function of ductility (u) that was period dependent (T) and proposed equations to evaluate the

e HelddB Gactdegrgp City Building Code; Director of Public Works: Mexico City, Mexico, 2004.
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increased with the ISDR values. The study was limited to regular ideal SPSW frames, and further research was
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limit state, which depended mainly on the adopted structural criterion. The strength reduction factors were

calibrated based on actual behavior factors, considering hazard and ultimate limit state vulnerability curves. The

study focused on a 2D regular frame with limited input ground motions.

Maheri and Akbari 39 investigated the seismic behavior factor (R) on a dual system with RC frames and steel
bracings, braced with steel X and knee-braced systems. Three regular RC buildings with four, eight, and twelve
stories were considered to assess the effect of story height, load sharing of the bracing system, and the type of
bracing on the R factor. The design base shear was obtained using a PGA of 0.3 g for the dual system. The
elements of the R factor, including the ductility reduction factor and overstrength factor, were evaluated using the
2D IPA based on a study by Mwafy and Elnashai 9. The results generated from the numerical IPAs were verified

with three similar model results obtained from the experimental pushover results 21, The results were found to be
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conservative with the code-recommended values. The study was limited to regular RC-braced buildings

investigated with 2D pushover analysis without inelastic dynamic analysis.

3.2.5. RC Shear Wall Structures

Challal and Gauthier 42l evaluated the seismic response of RC-coupled shear walls (CSWSs) through nonlinear
deformation and ductility response, designed as per the NBCC B and Canadian Concrete Standards 43, Five
buildings with six, ten, fifteen, twenty, and thirty stories were considered in the design using three Canadian
seismic zones. Nonlinear dynamic analysis under five seismic records verified inter-story drift and assessed plastic
hinges, displacement, and rotational ductility in walls and coupling beams. The code-specified drift limit was
conservative, with lower drifts for taller CSWs. Maximum displacement and ductility demand factors were
conservative in comparison with the NBCC limit, which decreased with an increase in the story height. The study
was limited to regular structures using 2D analysis with few seismic records and recommended further

investigation with different irregularities under a more extensive range of ground motions.

Elnashai and Mwafy [£944] evaluated Q, and R on RC wall buildings designed with modern seismic codes. Regular
frame-wall buildings with eight stories were designed according to EC8. The seismic design factors were evaluated
using IPAs and IDAs with eight natural and artificial records. The calculated R factors were over-conservative
compared with the design code, prompting a recommendation to increase R values, especially for structures with
high ductility levels at lower PGA values. The study focused on medium-rise buildings designed to Eurocode

standards.

Maysam Samadi and Norouz Jahan 3 examined the impact on seismic design parameters such as (a) the
response modification factor (R), (b) the deflection amplification factor (C,), (c) the overstrength factor (Q), and (d)
the damping ratios for tall steel buildings. The study examined regular steel buildings with 28 and 56 stories,
featuring steel-braced and RC shear wall cores with outriggers placed at every quarter of the building height,
resulting in forty-four building models. Seismic parameters were assessed using the modal response spectrum
(MRS), pushover, and nonlinear time history (NLTH) 3D analyses. Including the outriggers increased the response
modification factor, overstrength, stiffness, and damping ratios, particularly in the buildings with RC core walls,
while reducing ductility in both systems. Their study also identified inadequacy in the code-recommended C,4

values.

The previous studies conducted since 2001 on assessing the seismic response factors of MDOF systems for RC
shear wall structures were based on 2D analytical works using IPAs and IDAs. Earlier studies were based on
regular shear wall buildings, and the evaluations of seismic response factors were based on unidirectional seismic
loading. In earlier studies, irregular shear wall buildings under the effect of bi-directional loading employing 3D

inelastic analysis were not considered.
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