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Non-intrusive load monitoring (NILM) techniques are central techniques to achieve the energy sustainability goals

through the identification of operating appliances in the residential and industrial sectors, potentially leading to

increased rates of energy savings. NILM received significant attention, reflected by the number of contributions and

systematic reviews published yearly.

load disaggregation  neural NILM  federated learning

1. Introduction

Global energy demand is rising quickly, which in turn, makes the need for electric energy rise even faster,

especially in household setups. Current studies reveal that the most crucial element in resolving energy issues

would be the intelligent and cost-effective use of electricity as the primary source of energy . This, in turn, raises

the need for systems that recommend best practices and actions to use energy in homes, workplaces, and

buildings more efficiently . To recommend positive actions to the users and help them adopt a more efficient

energy consumption behavior, it is essential first to capture their energy footprint and analyze their behavior

concerning the use of appliances . The analysis of energy utilization can help in this regard. A viable solution is

to use smart meters and sensors to record the energy consumption of each appliance, potentially combined with

smart data analytics to visualize the energy consumption habits . Nonetheless, a more financially affordable

solution is to use only a single meter, and non-intrusive load monitoring (NILM) techniques  to identify the

consumption of each appliance from the aggregate measurements. NILM techniques offer thus the possibility to

determine which appliances are utilized in a household at any moment and the corresponding amount of energy

consumed . Therefore, these approaches can be leveraged by different services such as activity monitoring ,

and the detection of defective appliances .

Several algorithms were suggested to address the NILM problem . Nonetheless, deep neural networks have

received significant attention since their first introduction . These models fast became the main research stream

in NILM scholarship, mainly encouraged by the availability of several real and synthetic energy datasets (e.g.,

REFIT , SynD ), enabling the training and testing of these models considering different scenarios. Many of

these approaches were developed to evaluate the advantages and drawbacks of different deep learning concepts

on the energy disaggregation task and achieved significant enhancement in the performance.

2. Data Engineering for NILM
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The emergence of ML algorithms in NILM scholarship highlighted the importance of data engineering to enhance

the disaggregation performance for different appliances. Thus, this aspect received particular attention from recent

systematic reviews. The current manuscript groups three main data processing steps under the term data

engineering: data preprocessing, feature extraction, and postprocessing techniques. Nonetheless, feature

extraction received relatively more attention from the selected set of reviews than preprocessing and

postprocessing techniques adopted in different contributions.

The preprocessing techniques adopted in different contributions were covered in two reviews, mainly . The

authors of  highlight two main techniques considered mandatory for the majority of algorithms: (i) handling

sampling rates and missing data, and (ii) balancing. The first technique, handling sampling rates and missing data,

is related to the quality of the data sets during training and is leveraged to address potential technical problems that

may occur in real setups (i.e., hardware and communication issues). The second technique provides a balance

between the ON states/events of each appliance and the OFF states/events. The latter problem is mainly caused

by residential appliances being OFF most of the time. In addition to the previous two techniques, the authors of 

provided an overview of data augmentation techniques adopted mainly to address the underrepresented classes.

An overview of the types of features in NILM was suggested in five different reviews, mainly . A

consensus between all these reviews can be concluded where three types of features were highlighted: steady-

state features, transient features, and external/nontraditional features. Alternatively, the reviews presented in 

provide a classification of NILM features based on the sampling frequency required, where they offered a clear

distinction between low-frequency and high-frequency features, as follows:

High-frequency sampling: This approach involves collecting data at a high rate, such as at a rate of one to

several times per second . This can provide a high level of detail and resolution, leading thus to improved

accuracy. The majority of transient features require high sampling rates.

Low-frequency sampling: This approach involves collecting data at a lower rate, such as at a rate of once per

minute or once per hour. This can be less resource-intensive but may also result in a lower level of detail and

accuracy.

Considering post-processing techniques, only reviews presented in  provided an overview of existing

approaches for NILM algorithms. One of the main findings of the quantitative analysis provided by the first review

(i.e., ) was the enhancement that can be achieved, where they found that 28% to 54% of improvement was

recorded in related work. Consequently, it is to conclude that postprocessing techniques are a key factor in

improving existing algorithms.

It was widely acknowledged in all the reviews that ML and AI models are the most prominent algorithms in the

NILM scholarship in recent years. Consequently, data engineering techniques are of enormous importance to

future NILM developments.
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3. NILM Algorithms, Comparison, and Evaluation Setups

The non-intrusive monitoring of the operation and energy consumption of appliances, especially in household

setups that consist of a large variate of loads and specific usage patterns, has been recognized as an essential

task for more than three decades, with the seminal work of Hart that defined the task .

The first group of solutions was mostly based on combinatorial optimization techniques, which assumed that the

total load was the result of a combination of appliances (with known loads) that operate in different states (even not

operating at all) and tried to find the combination of appliances and states that better matches the overall load

measurement. Taking this one step further, hidden Markov models(HMM) attempted to model the task using a

probabilistic approach concerning the appliances that operate at every moment and the state they are on. In the

last decade, technological advancements in neural networks and the underlying infrastructures that support their

operations, as well as the abundance of training data, gave rise to the ML approaches for NILM and mainly to

neural NILM, which demonstrated state-of-the-art performance under a variety of training conditions (e.g., high

sampling rates, enough computational capacity).

The problem of non-intrusive monitoring of appliances’ load based on the disaggregation of the measurements

from a single monitoring device is usually approached in the literature by breaking it into smaller tasks. Given a

known inventory of appliances for a household, these tasks comprise (a) the detection of different states for each

appliance, (b) the extraction of signatures per state and appliance, and (c) the classification of each measurement

to the most promising combination of appliances’ states . Instead of monitoring the operation of each appliance

on a second-by-second basis, some NILM techniques simply identify state change events and consequently record

the start and end time of an appliance usage and the total energy consumed . Alternatively, Neural NILM models

provide a point-to-point solution for each appliance.

Convolutional neural networks (CNNs) can be employed to detect state-change events. As suggested in , a

current sequence of length L2 is transformed in an image of L×L pixels and is fed to a CNN, which is then trained

to identify appliances initially on a single load task. This task allows distinguishing between appliances when a

single appliance is on at each moment. This is taken one step further by establishing a multi-load identification

task, in which the model is trained to distinguish between all possible load combinations. The main restriction of

such approaches is that the number of appliances in a household can be large. Consequently, the respective

number of combinations that must be identified at any moment becomes huge.

Energy measurement data are usually considered to be in the form of time series or sequences. Consequently, the

respective DNN architectures that capture the temporal semantics of input have also been employed. More

specifically, recurrent neural networks (RNNs) have been used in  as an alternative to combinatorial

optimization. RNNs successfully reconstruct the appliance signatures for the aggregated measurements and can

perfectly fit appliances they have already been trained on. However, they need help to generalize on unseen

appliances or power states and require vast amounts of data and a lot of computational power to be trained. In an

attempt to improve the generalization of RNNs, authors in  employ gated recurrent units (GRU) and show that
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they outperform the RNN baseline. In the same direction, authors in  suggest using LSTM-RNNs to tackle the

vanishing gradient problem better whilst learning the long-term patterns that constitute the appliances’ signatures in

the multi-state and multi-appliance setup.

The autoencoders (AEs) represent another architecture commonly used to extract more coherent input data

representations. As such, they can be used to extract the features that compose the signature of the various

appliances. They are composed of encoding and decoding layers, and at training time, they learn to optimize the

output so that it better resembles (if not identical) the input. After training, the encoder is used to obtain the

representation of the input to a different dimension. A stochastic variation of autoencoders is the denoising

autoencoders (dAEs), which introduce noise to the input so that the autoencoder does not learn the identity

function (i.e., f(x) = f) during training. Consequently, the energy disaggregation task can be approached as a

denoising problem, utilizing techniques that can transfer a noisy overall consumption from multiple appliances to a

“clean” consumption of each individual appliance, using as input either active, reactive, apparent power, current,

voltage, or any combination of them.

Denoising AEs employs a 1-D convolutional layer in the encoder part to feed the input measurements in segments

(few seconds windows) and another 1-D convolutional layer in the decoder, with the size that depends on the size

of the appliance activations . They can be trained using synthetic datasets that combine the measurements of

various appliances and aim to reconstruct each appliance’s signature in the output. Authors in  have combined

dAEs with RNNs to combine the merits of ANNs and HMM-based methods. Using dAEs, they obtain the signatures

of the appliances, and by feeding them to the LSTM, they can identify the most promising combination of

appliances (and modes) that corresponds to the aggregated consumption at any moment.

The review presented in  on the DNN approaches for low-frequency NILM begins with the increased

requirements for processing high-frequency NILM data and continues with the evaluation of various NN-based

techniques that combine CNNs with LSTMs, GRUs, and other RNN variations or even with generative adversarial

networks (GANs) and AEs (denoising or variational autoencoders) in an attempt to improve the classification

accuracy of collective appliance signals. The main challenge for the different algorithms relates to the overall

performance, which is usually affected by the dataset used, the sampling frequencies, the input features, the

metrics used for evaluation, etc. The choice of the best parameters for all the above can significantly affect the final

performance as much as the architecture. According to , a best practice for developing DNN models is the

automation of hyper-parameters tuning and selecting the appropriate architecture. Using toolkits that aggregate

multiple alternative architectures allows for finding the best solution at each NILM setup.

The evaluation of NILM algorithms is generally performed using widely acknowledged ML metrics and NILM

datasets. Nonetheless, some evaluation metrics dedicated only to NILM models can also be identified  though

receiving little attention in recent NILM reviews since they are less commonly used. However, despite their seldom

use, these metrics could show a better summary of disaggregation results since they focus on the NILM problem

by design. NILM datasets also received significant attention from existing reviews where the sampling rate and the

data quality remain the main concern. Furthermore, NILM toolkits are an important part of the evaluation as they
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improve research efficiency. This aspect was only covered in two reviews  revealing that available NILM

toolkits emphasize the algorithms without considering the available hardware and network infrastructure, which is

critical for the real-time monitoring of appliances. In this direction, lightweight models  that combine CNNs for

learning features and simple classifiers to detect appliances seem to be promising solutions. Another solution for

scalability is using FL approaches , which can move the processing load from a centralized to a decentralized

approach taking advantage of several low processing power devices to solve the same task. Federated NILM

solutions can also support privacy since data are not shared across nodes or with a centralized server , but also

open new challenges for researchers, which are discussed in more detail in the following section.

4. Federated NILM

FL , also referred to as collaborative learning, is a learning paradigm that Google introduced in 2017 to

protect the privacy of its clients. Following this learning paradigm, the model is sent to the client rather than the

data uploaded to a cloud server. It starts in a central server responsible for initializing the model’s weight and

sharing them with the clients. Upon the reception of the global model, each client executes a training task using its

local data for a number of iterations and sends the new weights of the model back to the central server. Once the

central server has received the local models, it will aggregate them to obtain an updated version of the global

model. The process is repeated for several rounds until convergence is achieved. The most popular aggregation

algorithm is known as the FedAvG , which relies on calculating the average of the weights of local models as an

aggregation mechanism. The weighted average can be used when the size of local datasets differs for clients

participating in the training. Several variants of this scheme exist in the literature, considering different aspects .

For example, peer-to-peer FL enables direct clients’ communication and eliminates the central node . More

precisely, each client broadcasts their model to the other clients contributing to the training round. Considering this

variant of FL, the goal is to achieve a fully decentralized training process without the need for a central server

considered a single point of failure. Other variants of FL also exist but remain out of the scope of the current

manuscript.

The upgrade of the electrical grid in many countries around the globe, with the advanced metering infrastructure

and edge devices, offers the possibility of adopting an FL paradigm for efficient grid management. It was

extensively adopted in the case of load forecasting (e.g., ) and power generation prediction for renewable

energies (e.g., ). Nonetheless, only a handful of contributions have explored the adoption of this learning

paradigm in NILM scholarship: ten contributions for residential load disaggregation, one for solar energy

disaggregation, and only one for investigating security aspects of FL in smart grids with respect to load

disaggregation.

An FL framework for NILM was suggested in , where transfer learning was used between different domains. The

goal of the contribution was to protect consumers’ privacy and overcome the problem of non-identically distributed

data. Three public data sets were considered during the evaluation setup, where the main focus was to establish a

comparison with centralized load disaggregation schemes. The results showed high potential for the suggested FL

approach. Nonetheless, transfer learning from one domain to another one demonstrated poor results and showed
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that fine-tuning is required. Despite the extensive evaluation of the disaggregation performance, the previous study

provided no analysis of the communication cost and model efficiency, and little attention was given to the hardware

requirements of the edge devices. These limitations were also admitted in  and highlighted as future direction.

Furthermore, the authors stressed the need to upgrade NILM toolkits with federated/decentralized trainers,

enabling further research in this respect. Both of the previous studies adopted a Seq2Point model, which shows

the strength of this model in the case of FL for load disaggregation. More precisely, even short versions of this

model provide very competitive results as demonstrated in  where the authors suggested shortening the

Seq2Point baseline trained following an FL paradigm revealing promising results despite the low number of training

clients. A similar study focusing on transfer learning was suggested in , where a model-agnostic meta-learning

approach was introduced to enable task-specific learning and allow data owners to adjust the models based on the

tasks. In this regard, the FL is augmented with a meta-learning step at each round. The evaluation setup

demonstrated enhanced disaggregation performance but with a longer time required for convergence.

The FL was further tested in combination with differential privacy in  where the Seq2Point  baseline was

leveraged during the experimental setup. The evaluation showed that this combination provides good results in the

case of the fridge, which exhibits a period consumption pattern but failed in the case of hand-operated appliances,

mainly the kettle and microwave, which are directly related to daily routines. Furthermore, they demonstrate that

differential privacy causes poor results due to the noise added where smaller epsilon values allow mitigating

privacy attacks. Still, higher values provide similar privacy leakage to the standard FL framework. A similar study

was presented in , evaluating the impact of noise added on the overall disaggregation of a standard federated

NILM framework. The evaluation was performed using a temporal pooling model on three different data sets. It

resulted in the amount of added noise drastically hindering the disaggregation task, thus achieving similar

conclusions to work presented in .

The performance of a classification federated NILM algorithm was investigated in , combining FL with state-of-

the-art NILM models for state classification. However, it mainly concentrated on using testing data from the same

buildings included in the training, which may have led to biased conclusions. A multi-target federated NILM was

suggested in . The proposed framework leverages a multi-target learning paradigm to train a single model for all

the target appliances with pruning techniques to compress the model. The experiments on three real datasets

demonstrated an acceptable trade-off between privacy and disaggregation performance but with a relatively low

performance, mainly a low f1-score.

Interestingly, a federated decision tree algorithm was designed in  for load disaggregation leveraging a two-state

voting process and node-level parallelism for co-modeling NILM. During the model training phase, the server

receives the local training results. It makes the final decision to select the model parameters used to split the tree

nodes, including features and the corresponding thresholds. The local clients are responsible for data

preprocessing, tree structure initialization, gradient computation, local histogram establishment, local split finding,

and model updating. The voting thus results in a list of top-K candidate features chosen based on the maximum

variance gain on local machines forwarded to the central server that will select candidate features based on
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majority voting. Unfortunately, designed this way, the algorithm suffers from privacy leakage of partial feature

indexes.

Despite the interesting findings of previous studies, a shared shortcoming between is their high on to the central

node. More precisely, all previously presented works adopt a client-server architecture where the server represents

a single point of failure. To overcome this issue, a fully decentralized FL approach was evaluated in  by adopting

a circle topology instead of a star topology to optimize clients’ communication. The experimental setup highlighted

equivalent results to the centralized FL approach. However, the authors did not evaluate the gain/loss in the

communication bandwidth in the case of the decentralized FL. Furthermore, each node in the circle topology is a

point of failure. Further research is thus required to develop a mechanism that allows to re-establish the circle in

the case of failures.

The results obtained on unseen buildings were chosen whenever available. Moreover, the F1-score is the most

common metric among the different contributions. It is clear from the table that the results drastically differ between

appliances. The highest f1-score was reported in the case of the washing machine upon optimal model selection

before the aggregation in . Meanwhile, the worst value was reported for the case of the dishwasher in . Apart

from indicating the low quality of FL frameworks, these results highlight the tremendous challenge that training on

several appliances from different buildings could impose. The low values reported in  are linked to the

approaches added to the standard federated framework, that is, compression and differential privacy. Overall, the

reported results are acceptable, especially in the case of approaches that consider training data from different

buildings and were tested on unseen buildings, simulating thus the most realistic scenario.
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