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The high incidence of fungal infections has become a worrisome public health issue, having been aggravated by

an increase in host predisposition factors. Despite all the drugs available on the market to treat these diseases,

their efficiency is questionable, and their side effects cannot be neglected. Bearing that in mind, it is of upmost

importance to synthetize new and innovative carriers for these medicines not only to fight emerging fungal

infections but also to avert the increase in drug-resistant strains.
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1. Definition

There is a wide range of fungal infections, from superficial, affecting skin, to systemic infections with invasion of

internal organs . Fungal infections affect millions of people every year worldwide. Of these, more or less 1.5

million are invasive fungal infections therefore requiring advanced treatment and hospitalization. Most of these

disseminated infections are caused by Candida, Cryptococcus, Aspergillus, and Pneumocystis species, being the

cause of cryptococcosis, candidiasis, aspergillosis, and pneumocystis pneumonia, respectively .

Superficial fungal infections are rather common and, despite rarely being life threatening, they can spread to other

skin regions and even become widespread. Furthermore, they can be transmitted to other people and may cause

secondary bacterial skin infections, harming the quality of a person’s life. Skin mycoses are classified according to

the causative fungal agents into dermatophytosis, yeast infections, and mold infections .

2. Introduction

Invasive fungal infections represent a significant burden to healthcare systems, having high morbidity and mortality

rates. These rates are most worrisome among immunocompromised patients that are more prone to opportunistic

infections, such as patients with Acquired Immune Deficiency Syndrome (AIDS), transplant patients whose immune

systems are suppressed to prevent organ rejection, patients with cancer who are taking immunosuppressive

chemotherapy or autoimmune patients undergoing immunosuppressive therapy .

The currently major available agents to treat invasive fungal infections can be grouped into four main classes

according to their mechanism of action: polyenes, azoles, allylamines, and echinocandins (Table 1) . They all
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present drawbacks when it comes to spectrum of activity, drug–drug interactions, pharmacokinetics and

pharmacodynamics, resistance mechanisms, and the toxicity of the compounds themselves. Furthermore, there

are some limitations in terms of clinical efficacy and efficiency, mainly because of their physical-chemical

properties, like their hydrophobic character that leads to a low solubility in water and also selectivity problems

deriving from the similarities between fungi and human cells .

Table 1. Targets of each group of antifungals .

Nevertheless, the design and development of new drug delivery systems or even new antifungals is an emerging

need, owing to the following facts :

There are 20–40% mortality rates with invasive mycoses, therefore these figures need to be improved;

[3][5]

[6][7]

Class Target (Mechanism of Action) Antifungal

Azoles
Ergosterol (inhibition of lanosterol 14-α-

demethylase)

Imidazoles

Miconazole

Econazole

Ketoconazole

Clotrimazole

Triazoles

Itraconazole

Fluconazole

Voriconazole

Allylamines Ergosterol (inhibition of squalene epoxidase)

Terbinafine

Naftifine

Butenafine

Polyenes

Cell membrane (production of ROS) Amphotericin B

Ergosterol (inhibition of lanosterol 14-α-
demethylase)

Nystatin

Echinocandines Cell wall (block of β-1,3 glucan synthesis)
Caspofungin, Micafungin,

Anidulafungin

Other
antifungals

Chelation of polyvalent metal cations Ciclopirox

Microtubules (prevention of the formation of the
mitotic spindle)

Griseofulvin

Ergosterol (inhibition of D14 reductase and D7-D8
isomerase)

Amorolfine

[8]
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The increase in patients undergoing prolonged antifungal therapies reflects the need to develop better

fungicidal drugs and thus reduce the length of the treatments and the costs associated;

There is still space for improvement in pharmacokinetics and pharmacodynamics, in order to reduce the

frequency of drug use;

More attention needs to be given to the host toxicities and drug–drug interactions of current therapy so that their

effects can be eliminated or, at least, minimized;

New therapy groups with different mechanisms of action are needed; this way, these new drugs may synergize

with present ones and allow better responses;

There is an alarming growth in antifungal resistance in all therapeutic groups [8].

Nanotechnology is an emerging field of science that has shown an undeniable versatility and has boosted a

revolution when it comes to medical treatments, quicker diagnosis, cellular regeneration, and drug delivery .

The material to produce nanoparticles can be divided into three main groups: polymers, lipids, or metals, each one

giving rise to a different type of nanoparticle . The main representatives of each of these three different groups

of nanoparticles are mentioned in Figure 1 below.

Figure 1. The new drug delivery systems based on nanotechnology that are currently being employed in order to

enhance drug delivery, promote a better targeting, and reduce the toxicity of conventional antifungal drugs. It is

also important to point out the importance of the production of nanoparticles by fungi (biological synthesis) and the

undeniable potential of the sea as a source of new molecules with antifungal activity.

Nanoparticles have been employed in pharmaceutical formulations because of their ability to alter and improve the

pharmacokinetic and pharmacodynamic properties of the drugs. This is given to their capability to increase the

solubility and stability of the drugs, to allow a controlled release and to exhibit biocompatibility with tissues and
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cells, which is reflected in an overall improvement on therapeutic efficiency . In addition, its subcellular size is

compatible with an intravascular injection and its high surface area is amenable to modification so that the drug is

released in a specific target, thus reducing the systemic adverse effects and increasing the therapeutic compliance,

by decreasing the usual dose and the frequency of administration . This targeted-specific action is possible

since, at a nanomolecular level, it is possible to incorporate target ligands that allow a preferential binding of certain

types of cells, by conjugation with antibodies and peptides on the surface of the transporters . Hence, the

development of new biopharmaceutical systems, especially nanoparticulate carriers, is a good strategy to improve

the therapeutic efficacy, safety, and compliance of conventional antifungal drugs.

In Table 2 an overview of the new antifungal drug delivery systems is presented, and the drug chemical group, their

route of administration, and their dosage form provided.

Table 2. Some of the novel drug delivery systems already developed for each antifungal drug.

Antifungal
Drugs

Novel Drug
Delivery
Systems

Routes of
Administration

Dosage
Forms References

Miconazole

Niosomes Transdermal Gel

SLN
Oral N.A.

Topical Gel

Microemulsion Topical N.A.

Liposomes Topical Gel

Nanoemulsion Topical N.A.

Nanosponges Vaginal Gel

Transfersomes Topical Gel

Econazole
Microemulsion

Percutaneous N.A.

Topical Gel

SLN Topical Gel

NLC Topical Gel

Liposomes Topical Gel

Ethosomes Topical Gel

Transethosomes Transdermal Gel
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Antifungal
Drugs

Novel Drug
Delivery
Systems

Routes of
Administration

Dosage
Forms References

Nanosponges Topical Hydrogel

Niosomes Transdermal Gel

Polymeric
micelles

Topical N.A.

Nanoemulsion Topical N.A.

Ketoconazole

SLN/NLC Topical Gel

Niosomes Topical Gel

Microemulsion Oral N.A.

Spanlastics Ocular N.A.

Dendrimers Topical Hydrogel

Liposomes Topical N.A.

Clotrimazole

Liposomes Topical Gel

Nanosponges Topical Hydrogel

Ethosomes Topical Gel

Niosomes Topical Gel

Polymeric
emulgel

Topical Gel

Polymeric
micelles

Topical N.A.

SLN/NLC Topical N.A.

Microemulsion
Buccal Gel

Vaginal Gel

Transfersomes Transdermal/Topical N.A.

Itraconazole Transfersomes Transdermal N.A.

SLN Ocular N.A.
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Antifungal
Drugs

Novel Drug
Delivery
Systems

Routes of
Administration

Dosage
Forms References

NLC Inhalation N.A.

Niosomes Topical N.A.

Microemulsion Transdermal N.A.

Liposomes Topical N.A.

Polymeric
nanoparticles

Oral N.A.

Polymersome Intravenous N.A.

Spanlastics Ocular N.A.

Silica
nanoparticles

Oral N.A.

Fluconazole

Microemulsion Vaginal Gel

Niosomes Ocular Gel

Liposomes Intravitral N.A.

SLN Topical Gel

NLC Oral N.A.

Microsponges Topical Gel

Ethosomes Topical Gel

Spanlastics Ocular N.A.

Polymeric
amphiphilogel

Topical Gel

Polymeric
micelles

Topical N.A. [35]

Voriconazole Microemulsion Ocular N.A.

Polymeric
nanoparticles

Ocular N.A.

Pulmonar N.A.

SLN Topical Gel
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Antifungal
Drugs

Novel Drug
Delivery
Systems

Routes of
Administration

Dosage
Forms References

Transethosome Topical N.A.

Ethosome Topical N.A.

Terbinafine

Liposomes Topical Gel

SLN Topical N.A.

Transfersomes Topical N.A.

Spanlastics Transungual N.A.

Polymeric
chitosan

nanoparticles
Topical Hydrogel

Naftifine
Microemulsion Topical N.A.

Niosomes Topical Gel

Butenafine Microemulsion Topical Hydrogel

Amphotericin
B

Liposomes Intravenous N.A.

SLN/NLC
Oral N.A.

Topical N.A.

Magnetic
nanoparticles

Nasal instilation N.A.

Nanoemulsion Topical N.A.

Polymeric
nanoparticles

Intravenous N.A.

Oral N.A.

Polymersomes Oral N.A.

Transfersomes Topical N.A.

Micelles Intravenous N.A.

Silica
nanoparticles

Intravenous N.A.

Nystatin SLN Topical N.A.
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Antifungal
Drugs

Novel Drug
Delivery
Systems

Routes of
Administration

Dosage
Forms References

Nanoemulsion Topical N.A.

Liposomes Intravenous N.A.

Niosomes Parenteral N.A.

Griseofulvin Niosomes Oral N.A.

Ciclopirox Niosomes Topical Gel

Caspofungin,
Micafungin,

Anidulafungin,
Amorolfine

No nano-tech studies yet released

N.A.: the dosage form is not mentioned in the reference cited; SLN: Solid Lipid Nanoparticles; NLC:

Nanostructured Lipid Carriers.
 

However, the efficacy and human safety of these new therapies remain uncertain in most of the articles found in

literature. They generally lack controlled clinical trials and sometimes the suggested routes of administration are

less practical, or the production cost may hinder the replacement of the conventional treatment. Nevertheless, in

other cases, the opposite is verified, and some options have potential to become a viable first line treatment .

Moreover, given the widespread use of antifungal agents and the limited therapeutic offer, fungi have developed

resistance mechanisms, like overexpression of efflux pump proteins and formation of biofilms. These mechanisms

can mean not only a decrease in a drug’s effective concentration, but also changes and subexpression of drug

targets and metabolic bypass . It is important to add that resistance is a cross-cutting issue to all of the currently

available classes of antifungal agents, therefore overcoming antifungal resistance can be considered as the

mainstay for improving therapeutic strategies to treat antifungal infections .

Despite the uprising of these issues in antifungal therapy, there are several mechanisms by which nanoparticles

overcome the development of resistance mechanisms:

The chemical features and simultaneous multiple mechanisms used by nitric oxide, chitosan, and metallic

nanoparticles make the likelihood of resistance development unviable (for example, through the direct reaction

of reactive nitrogen oxide intermediates with DNA structure)  ;

The resistance mechanisms can be prevented by packaging multiple antimicrobial drugs within the same

nanoparticle, because the likelihood of multiple simultaneous gene mutations in the same cell is low. The most

striking examples are the encapsulation of antifungal drugs in chitosan or silver nanoparticles, combining the

antifungal properties of both and decreasing the possibility of drug resistance ;
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Some nanoparticles, such as liposomes and dendrimers, are able to overcome the resistance mechanisms of

decreased uptake and increased efflux of drug from the microbial cell. Liposomes are able to quickly fuse with

the plasma membrane of the microbial cell and release a high concentration of drug into its plasma membrane

or cytoplasm, thereby circumventing the decreased uptake mechanism of resistance. This means a faster

delivery and avoidance of the transmembrane pumps that catalyze increased efflux of drugs. Dendrimers, on

the other hand, are extensively branched molecules, whose surface can be filled with positively charged

quaternary ammonium compounds, which bind to negatively charged microbial cell envelopes and increase

membrane permeability. This allows the entrance of more dendrimers to the microbial cell, the flow of its

cytoplasmic contents to the exterior, and the ultimate destruction of the microbial cell membrane. This goes to

show that dendrimers are also able to surpass the resistance mechanism of decreased uptake of drug .

Other nanoparticles, specifically nitric oxide nanoparticles made of silica and zinc oxide nanoparticles are able

to overcome biofilm formation by killing the microbes present in already formed biofilms or by inhibiting biofilm

formation through the generation of reactive oxygen species, respectively ;

Nanoparticles have been used to target antifungal drugs to the specific site of infection, allowing the local

release of high concentrations of drug, while keeping the total dose of drug administered low. This high local

dose is able to destroy the infecting fungi before they can develop resistance, thereby overcoming this

worrisome issue and translating into fewer side effects upon the patient .

That being said, it is also important that the research done, not only focuses on formulating these systems, but also

in overcoming the major challenges that their placing on the market faces: the physical instability of nanoparticles,

their small capacity of drug loading, the cytotoxicity/immunogenicity, and the high cost of production and

standardization, given the complexity of the formulations. Besides that, there is almost a complete lack of studies in

vivo as reaching the therapeutic range needed to perform these studies has proven to be an arduous job. That lies

in the fact that, in many cases, there is an anticipated release of the drug, aggregation and precipitation of the

nanoparticles, and the accumulation in non-target tissues.
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