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The miRNAs and cDNA-microarrays are powerful tools to enhance abiotic stress tolerance in plants through

multiple advanced sequencing and bioinformatics techniques, including miRNA-regulated network, miRNA target

prediction, miRNA identification, expression profile, features (disease or stress, biomarkers) association, tools

based on machine learning algorithms, NGS, and tools specific for plants. Such technologies were established to

identify miRNA and their target gene network prediction, emphasizing current achievements, impediments, and

future perspectives.

salinity stress  cold stress  miRNAs

1. miRNAs and cDNA-Microarray Associated with Cold
Stress

Cold stress (frost and chilling) decreases crop yields worldwide through tissue degradation and delayed growth.

Most temperate plants have evolved cold resistance through cold-acclimatization . Signaling pathways were

being used in response to winter stress. The functional genes transform reactions, and reposts suggest that the

signaling pathways for leaf senescence and plant defense responses may overlap . The most characteristic

region of cold-stress responsive genes includes transcription factors, such as CBF/DREB and stress-inducible

candidate genes, identified as KIN (cold-induced), COR (cold-regulated), and LTI genes (induced by low

temperature) or RD (dehydration) . Several HSPs (heat shock proteins) are also reported for their functions

against cold stress. HSPs, which perform as molecular chaperons, play an important regulatory function in

protecting from stress by restoring normal protein conformation and thus maintaining cellular homeostasis in plants

. The number of the miRNA target genes in expression is intricate during stress and plant growth. These miRNAs

are co-regulated by both developmental signals and ecological factors (Table 3). The cold-responsive miRNAs

were detected by microarray analysis in Arabidopsis thaliana (miR165, miR31, miR156, miR168, miR171, miR396)

and recommended by identifying their expression patterns in their promoter sequences and evaluating the cis-

components (Table 3, Figure 1) . Furthermore, high-intensity light (HL) responsive genes were assessed with

the drought-inducible genes reported with a similar microarray system, which exposed an impenetrable intersection

between drought and HL-induced genes. Moreover, 10 genes were identified as being involved in the regulation by

HL, drought, salinity, and cold stress (Table 1 and Table 2). These genes are comprised of ERD10, RD29A, KIN1,

LEA14, COR15a, and ERD7, and most of them are considered to be concerned in the defense of cellular

components . Along with the HL-inducible genes, some are also identified and encouraged by other stresses
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(heat, drought, and cold), including AtGolS, LEA, RAB, RD, COR, ERD, HSP, KIN, lipid-transfer proteins, and

fibrillins .

Figure 1. Schematic summary of miRNA-mediated regulatory mechanisms under abiotic stress in plant cells, with

the particular formation process of miRNAs and miRNA mediated gene regulation: (1) miRNA gene is transcribed

to a long sequence of primary miRNA (pri-miRNA). Primary miRNAs (pri-miRNAs) are transcribed from nuclear-

encoded MIR genes by RNA polymerase II (Pol II), leading to precursor transcripts with a characteristic hairpin

structure. (2) The pri-miRNA is cleaved to a stem-loop intermediate called miRNA precursor or pre-miRNA.

Table 1. Examples of miRNAs identified in model plants under drought, cold and salinity stresses.
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Stress
Condition

Plant
Species Inducible Genes

Known
Responsive

miRNAs
Functions References

Drought
stress

Arabidopsis
thaliana

Rd29A (At5g52310)
CCAAT-binding

transcription factors

miR164,
miR169,
miR389,
miR393,
miR396,
miR397,
miR402

Pathogen
immune

response
Drought

tolerance
Oxidative stress

tolerance
Pathogen
immunity
response
Syncytium
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Stress
Condition

Plant
Species Inducible Genes

Known
Responsive

miRNAs
Functions References

formation
response to

parasitic
nematodes

Medicago
truncatula

CCAAT Binding Factor (CBF)
Growth Regulating Factor

(GRF)
Cu/Zn superoxide dismutases

(CSD1, CSD2)
TIR-NBS-LRR domain protein

miR169,
miR396
miR398,
miR2118

Drought
tolerance
Syncytium
formation

response to
parasitic

nematodes
Oxidative stress

tolerance
Photoperiod-

sensitive male
sterility

Oryza
sativa

SalT (LOC_Os01g24710)
TIR1

OsLEA3 (LOC_Os05g46480)

miR393
miR402

Salt/cold
tolerance

Cold
stress

Arabidopsis
thaliana

Rd29A (At5g52310)
CBF3 (At4g25480)

miR165,
miR172,
miR169,
miR396,
miR397,
miR402

Drought/cold
tolerance
Drought

tolerance
Heat stress
tolerance

Oryza
Sativa

OsWRKY71
(LOC_Os02g08440)

OsMAPK2(LOC_Os03g17700)
Os05g47550, Os03g42280
Os01g73250, Os12g16350

Os03g19380

miR319,
miR389,
miR393,

miR1320,
miR1435

miR1884b,
CHY1

CP12-2

Drought/salt
tolerance

Cold tolerance
Pathogen
immunity
response

Salinity
stress Arabidopsis

thaliana
Rd29A (At5g52310)

COR15A (At2g42540)
miR389,
miR393,

Oxidative stress
tolerance

Heat stress
tolerance

Populus
trichocarpa

Dihydropyrimidinase miR162,
miR164,
miR166,
miR167,
miR168,
miR172,

Pathogen
immune

response
Drought

tolerance
Drought/cold
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Table 2. Microarray analysis of genes involved in the drought, salinity and cold stress responses in Arabidopsis.

Stress
Condition

Plant
Species Inducible Genes

Known
Responsive

miRNAs
Functions References

miR395,
miR396

tolerance
Sulfate-

deficiency
response

Glycine
max  

miR1507a,
miR395

Sulfate-
deficiency
response

Oryza
sativa

SalT (LOC_Os01g24710)
OsLEA3 (LOC_Os05g46480)

miR156,
miR158,
miR159,
miR397,
miR398,

miR482.2,
miR530a,
miR1445

Drought
tolerance
Pathogen
immune

response
Heat stress
tolerance

Zea mays   miR402

Seed
germination
and seedling

growth of
Arabidopsis
under stress
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Phenotype of
Mutants Genes Function AGI Code Coded

Proteins Microarrays  

Increased
tolerance to

drought
AtPARP2 DNA repair At2g31320

Poly
(ADPribose)
polymerase

24K
Affymetrix

Hypersensitive
to

drought stress

AHK1/
ATHK1

positive regulator of
drought and salt stress

responses
At2g17820

Histidine
kinase

22K
Agilent

Increased
tolerance
to drought

stress

AREB1/
ABF2

regulate the ABRE-
dependent expression

At1g45249 bZIP TF
22K

Agilent

Increased
tolerance to
salt stress

AtbZIP60 encodes a predicted
protein of 295 aa

At1g42990 bZIP TF
44K

Agilent

Increased
tolerance to

drought stress
AtMYB60

regulates stomatal
movements and plant

drought tolerance
At1g08810 MYB TF 7K cDNA

Increased
sensitivity to

drought stress
AtMYB41

control of primary
metabolism and

negative regulation
At4g28110 MYB TF

24K
Affymetrix

Increased
tolerance to

drought and salt
stress

AHK2 positive regulators for
cytokinin signaling

At5g35750
Histidine
kinase

Agilent

Increased
tolerance to

drought and salt
stress

AHK3
perception of cytokinin,

downstream signal
transduction

At1g27320
Histidine
kinase

22K
Agilent
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Table 3. miRNAs regulated by drought stress, salinity stress, and cold stress in plants.

Phenotype of
Mutants Genes Function AGI Code Coded

Proteins Microarrays  

Increased
tolerance to
drought and

freezing
stress

DREB1A/
CBF3

stress-inducible
transcription factor

ERF/AP2
TF

ERF/AP2 TF 1.3K cDNA

Increased
tolerance to

drought stress
DREB2A heat shock-stress

responses.
At5g05410 ERF/AP2 TF

22K
Agilent

7K cDNA

Hypersensitive
to

salt
HOS10

coordinating factor for
responses to abiotic
stress and for growth

and development.

At1g35515 MYB TF
24K

Affymetrix

Increased
tolerance to

drought stress
ZFHD1 mediates all the protein-

protein interactions
At1g69600

Zinc finger HD
TF

22K
Agilent
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Stress

Condition
Plant

Species miRNA Key Functions Response References

Drought
stress

Medicago
truncatula

miR398a,b
miR408
miR399k
miR2089

miR2111a-f,h-s
miR2111g
miR4414a

Oxidative stress tolerance
Salt/drought/cold/oxidative
osmotic-stress responses

Phosphate-deficiency response

Up-
regulated

miR398b,c
miR2111u,v
miR5274b

miR1510a-3p,
5p

miR1510a

Heat stress tolerance
Drought responsive

Oxidative-stress tolerance
triggering phasiRNA production

from numerous NB-LRRs
Down-

regulated

Glycine
max miR5554a-c Drought responsive

Salinity
stress

Glycine
max

miR169d
miR395a

miR395b,c
miR1510a-5p

miR1520d,e,l,n,q

Drought tolerance
Sulfate-deficiency response

triggering phasiRNA production
from numerous NB-LRRs

Up-
regulated

gma-miR159b,c
gma-miR169b,c
gma-miR1520c

Pathogen immune response
Drought/Salt tolerance

Down-
regulated

Phaseolus
vulgaris pvu-miR159.2 Plant–nematode interaction

Cold
stress

Phaseolus
vulgaris

pvu-miR2118 regulate the expression of genes
encoding the TIR-NBS-LRR

Up-
regulated

[20][44][45]

[46][47]

[44][46][47]

[46]

[20][48][49]

[49]

[31]



MicroRNA and cDNA-Microarray against Abiotic Stress Response | Encyclopedia.pub

https://encyclopedia.pub/entry/18130 6/22

DNA microarrays almost in all genes of the unicellular Synechocystis sp PCC6803 were used to investigate the

gene expression sequential software . A cDNA-microarray was used to test the profile expression in cold stress,

and 328 temperature-regulated transcripts were reported. OsMYB3R-2 was studied further and was shown to be a

dominant regulator against stress . In this study, there was an attempt to use a 3.1K cDNA-microarray to

express the cold-regulated transcripts in the Capsicum annuum. Several TFs, including the EREBP (CaEREBP-C1

to C4) family of four genes, a protein of the ring domain, a bZIP protein (CaBZ1), RVA1, a WRKY (CaWRKY1), and

HSF1 protein have been observed among the cold stress-regulated genes. These genes included CaBZ1,

CaEREBP-C3, NtPRp27, the SAR8.2 protein precursor, putative trans-activator factor, malate hydrogenase,

putative protein of auxin-repressed, xyloglu-canendo-1, 4-D-gucanase precursor, LEA protein 5 (LEA5),

homologous DNAJ protein, PR10 and Stns LTP . cDNA microarray z1300 full-length cDNAs were used in

Arabidopsis to identify cold stress-inducing genes and target genes of DREB1A/CBF3. Six genes were

documented based on microarray and, in RNA gel blot analyses, it was observed that a novel DREB1A controls

cold- and drought-inducible genes . Furthermore, microarray with full-length cDNA was performed by 1300

full-length cDNAs and cDNA microarray to discover cold-induced genes. Previous reposts exhibited the target

genes of DREB1A/CBF3 and stress-inducible gene expressions were controlled by transcription factors ; in

contrast, stress-sensitive genes’ expressions were reported as specific to the growth stage . Full-length cDNA

microarray is convenient for analyzing the Arabidopsis gene expression patterns under cold stress, and can also be

used to identify the functional genes of stress-related TFs that are likely to act as DNA elements by merging the

genomic sequence data with the expression data . Additionally, cold stress is also induced by the increase in

the proline content in plants (osmoprotectant). Microarray and RNA gel blot research found that the proline can

induce the expression of several genes with the proline-responsive elements in their promoters (PRE, ACTCAT) 

. Microarray analysis was carried out to detect the cold-inducible AP2 gene family transcription factor RAV1

, which could control plant growth under stress. RAV1 is down-regulated by epibrassinolide, and transgenic

Arabidopsis overexpressing RAV1 exhibits a rosette leaf and adjacent root growth retardation, although the early-

flowering phenotype showed antisense to RAV1 plants .

2. miRNAs and cDNA-Microarray Response to Salinity Stress

Salt intrusion from saline soils and irrigation water is one of the most severe and harmful risks to reduce

agricultural production and adverse effects on cultivated land and the geographical distribution of plant species 

, coupled with oxidative stress . The most imperative cations in saline soils are calcium, potassium,

magnesium, and sodium, and the main anions in saline soils are chloride, bicarbonate, sulfate, nitrate, and

carbonates. Other electrolytes causative to salinity are borane, molybdenum, strontium, silicon dioxide, aluminum

cation, and barium ion . Higher concentrations of sodium chloride (NaCl) typically affect plant development,

metabolism, and physiology at various metabolic phases (ion toxicity, nutrient imbalance, and oxidative stress) 

. Despite such advances in scientific research, it remains unclear about the underlying molecular mechanism of

salinity responses in plants. However, based on the combination of microarray and inhibition subtractive

hybridization (SSH), changes in the transcriptome profile caused by salt induction were studied and evaluated .

Investigation of complete transcriptomics suggests that these processes, such as the synthesis of osmolytes and

Stress
Condition

Plant
Species miRNA Key Functions Response References

resistance protein
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ion carriers and the regulation of transcription and translation mechanisms, have distinctive reactions under salinity

stress. In particular, the introduction of transcripts of specific TFs, ribosomal genes, RNA-binding proteins, and

translation initiation and elongation factors has been testified .

Using cDNA microarray in Synechocystis, 19 genes were reported to be instantaneously regulated under salinity

stress. The salt- and osmo-regulated genes, and some putative sensor molecules, have been implicated during

salinity stress signaling . Several differentially regulated miRNAs have been reported against salinity stress. In

A. thaliana, several microRNAs are regulated against salinity stress, such as miR156, miR158, miR159, miR165,

miR167, miR168, miR169, miR171, miR319, miR393, miR394, miR396, and miR397 (Table 3, Figure 2) . In

Populus trichocarpa, miR1445, miR1447, miR1446a-e, miR530a, and miR171l-n were down-regulated (Table 3)

. Arenas-Huertero et al.  reported, in Proteus vulgaris, the production of miRS1 and miR159.2 expression in

response to salinity. Furthermore, miR169g and family members of miR169n were induced in saline-rich conditions

. However, there is a need to discover and annotate novel functional genes which have a probable function

against salinity stress. Subsequently, a large number of genes in plants still have unknown functions . Recent

studies revealed that specific down-regulation of the bacterial-type phosphoenolpyruvate carboxylase (PEPC) gene

Atppc4 by artificial microRNA enhanced the salinity tolerance in A. thaliana. The increased salinity tolerance might

be linked to enhanced PEPC activity . Transcript control for salinity-tolerant rice with microarrays, like 1728

cDNAs from salinity-stressed roots libraries, was studied in response to high salinity (Table 3) .
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Figure 2. Summary of commonly used (A) microarrays (cDNA, Affymetrix, and Agilent) to stress and (B) miRNAs,

categorized based on the stress, that respond to drought stress, salinity and temperature stress and (C) miRNAs

reported in (D) plant species: Populus trichocarpa, Medicago truncatula, Arabidopsis thaliana, Oryza sativa, Zea

mays and Glycine max.

A tiling path microarray was used to examine the high-throughput expression profiling patterns under various

environmental stresses for all of the known miRNAs  (Table 1 and Table 4). The analysis revealed that the

effects of miRNAs under low-temperature, drought, and high salinity with miRNA chips represent, approximately, all

of the reported miRNAs cloned or recognized in A. thaliana (L.). High salinity stress agitates homeostasis in water

potential. Extreme changes in water homeostasis and ions lead to molecular breakdown, stunted growth, and even

the death of cells or whole plants .

Table 4. Software and tools used for the detection of plant miRNA and cDNA microarray data analysis.
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Software and
Tools Function Website Reference Accessed

Software and tools used for detection of plant miRNA and data analysis  

MiPred

Random forest
(RF)-based

miRNA predictor,
which can
distinguish

between real
and pseudo-

miRNA
precursors

http://server.malab.cn/MiPred/
5

November
2021

miBridge
Algorithm and

database
http://sitemaker.umich.edu/mibridge/home

5
November

2021

miRTar

A novel rule-
based model

learning method
for cell line

specific
microRNA target

prediction

http://miRTar.mbc.nctu.edu.tw
5

November
2021

PolymiRTS

Linking
polymorphisms
in microRNAs

and their target
sites

http://compbio.uthsc.edu/miRSNP
25

November
2021

miRGator

microRNA portal
for deep

sequencing,
expression

profiling and
mRNA targeting

http://mirgator.kobic.re.kr
10

November
2021

Bowtie
Aligns efficiently,
and short-read

aligners
http://bowtie-bio.sourceforge.net

5
November

2021

miRBase
Provides handy
and useful ID

conversion tools
http://www.mirbase.org/

25
November

2021

miRDB
miRNA target

databases
http://www.mirdb.org

25
November

2021
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Software and
Tools Function Website Reference Accessed

mirDIP

Integrative
database of

microRNA target
predictions

http://ophid.utoronto.ca/mirDIP
25

November
2021

miRanda
Predict or collect
miRNA targets

http://34.236.212.39/microrna/home.do
25

November
2021

RNAhybrid
microRNA target

prediction
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid

8
November

2021

miTALOS

Analyzes tissue
specific

microRNA
function.

http://mips.helmholtz-muenchen.de/mitalos
5

November
2021

RNA22
microRNA target

predictions
https://cm.jefferson.edu/rna22

5
November

2021

psRNATarget
Small RNA

target analysis
server

http://plantgrn.noble.org/psRNATarget/
5

November
2021

miRandola

Curated
knowledge base
of non-invasive

biomarkers

http://mirandola.iit.cnr.it/
5

November
2021

ChIPBase

Decoding
transcriptional

regulatory
networks of non-

coding RNAs
and protein-

coding genes
from ChIP-seq

data

http://rna.sysu.edu.cn/chipbase/
1 October

2021

MirGeneDB
Curated miRNA
gene database

http://mirgenedb.org/
28

November
2021

TarHunter Predicting
conserved
microRNA
targets and

http://tarhunter.genetics.ac.cn 28
November

2021
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Software and
Tools Function Website Reference Accessed

target mimics in
plants

TissueAtlas
Tissue specificity
miRNA database

https://ccb-web.cs.uni-saarland.de/tissueatlas/
28

November
2021

miRNAme
Converter

miRNA ID
converter

http://163.172.134.150/miRNAmeConverter-shiny
28

November
2021

Software and tools used for detection of plant microarray and data analysis  

Array
Designer

Design primers
and probes for
oligo and cDNA

expression
microarrays.

http://www.premierbiosoft.com/dnamicroarray/index.html
1

November
2021

Stanford
Microarray
Database

SMD

Stores raw and
normalized data
from microarray

experiments

http://smd-www.stanford.edu//download/
1

November
2021

eArray
Designing

Agilent arrays
http://earray.chem.agilent.com/earray/login.do

1
November

2021

Significance
Analysis of
Microarrays

Adjustments for
multiple testing,

statistical
analysis for

discrete,
quantitative, and
time series data,

gene set
enrichment

analysis

http://www-stat.stanford.edu/~tibs/SAM/
5

November
2021

Visual OMP Design software
for RNA, DNA,

single or multiple
probe design,

microarrays, Taq
Manassays,
genotyping,
single and

multiplex PCR,
secondary
structure

http://www.dnasoftware.com/Products/VisualOMP 5
November

2021
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Software and
Tools Function Website Reference Accessed

simulation,
sequencing,
genotyping.

caArray

Open-source,
web and

programmatically
accessible

microarray data
management
system that
supports the
annotation of
microarray

http://caarray.nci.nih.gov/  
5

November
2021

Gene
Expression

Model
Selector

Diagnostic
models and
biomarker
discovery

http://www.gems-system.org/
18

November
2021

Gene index

Gene Index
Project is to use

the available
EST and gene

sequences,
along with the

reference
genomes, to
provide an
inventory of

likely genes and
variants.

http://compbio.dfci.harvard.edu/tgi/plant.html
5

November
2021

Genesis

Java package of
tools to

simultaneously
visualize and

analyze a whole
set of gene
expression

experiments

http://genome.tugraz.at/genesisclient/genesisclient_description.shtml  
18

November
2021

RMA Express

Standalone GUI
program for

Windows, OS X
and Linux to

compute gene
expression

summary values
for Affymetrix

http://rmaexpress.bmbolstad.com
http://www.r-project.org

http://www.bioconductor.org
 

18
November

2021
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Oligo-DNA microarrays were developed in common wheat, and these microarrays were designed to include

approximately 32,000 distinctive genes characterized by several expressed sequence tags (ESTs). To classify the

salinity-stress responsive genes, the expression profiles of transcripts that responded to stress were examined

using microarrays. It was concluded that 5996 genes were verified by more than a 2-fold change in expression.

These genes were categorized into twelve groups based on gene expression patterns . Transcription-regulator

activity, DNA binding, and the genes’ assigned transcription factor functions were preferentially classified as

immediate response genes. In wheat, candidate genes were identified as involved in salinity-stress tolerance 

. These genes are active in the regulation of transcription  and the signal transduction that is engaged in

metabolic pathways  or acting as ion transporters . cDNA library in yeast (Saccharomyces cerevisiae) was

examined using a synthetic medium augmented with excessive salt concentrations (900 mM). A few clones showed

comparatively improved growth. The notorious clones bore the Guanyl transferase (OsMPG1) mannose-1-

phosphate gene . Extreme salinity stress was significantly linked with the transcription factors of four tomato

genes from the family of zinc finger. There has been prior evidence of the relationship between zinc finger

transcription factors and plant salinity tolerance . Overexpression of OSISAP1 in transgenic tobacco resulted

in tolerance to salinity, dehydration, and cold stress in the new sprouts .

A microarray containing 384 genes associated with stress responses was used in Medicago truncatula genotypes

(Jemalong A17 and 108-R) to compare rooting gene expression during salt stress. The homolog of flora TFIIIA-

related TF, MtZpt2-1, and COLD-REGULATEDA1 genes were known to regulate the previous genes and were

acknowledged in Jemalong A17 stress-tolerant genotypes. Two MtZpt2 Transcription factors (MtZpt2-1 and MtZpt2-

2) have shown increased expression in the roots compared to 108-R . Salinity stress is attributed to diverse

stresses that persuade overlapping patterns in gene expression. For example, in an investigation of 8100 A.

thaliana genes, approximately 2400 genes were reported to have a widespread expression in exposure to salt,

oxidative and cold stress . In addition, 23 genes were reported against NaCl stress. This also accounted for a

small percentage of DEGs, including encoding transcription factors WOX2 and BZIP3, calcium-binding protein

CML42, ubiquitin-protein ligase UBC17, and IDA-like 5 protein . Most prominently, synthesized isiA encoded a

novel chlorophyll (Chl)-binding protein  (Table 3).

References

Software and
Tools Function Website Reference Accessed

dCHIP

Model-based
expression
analysis for

Affymetrix gene
expression

arrays

http://www.dchip.org
18

November
2021

TM4

Microarray Data
Manager

(MADAM), TIGR
Spotfinder,

Microarray Data
Analysis System

(MIDAS), and
Multi experiment

Viewer (MeV)

http://www.tm4.org/
18

November
2021

Able Image
Analyser

Software for
image analysis.

It enables
dimensional

measurements:
distance, area,
angle in digital

images

http://able.mulabs.com
18

November
2021

ImaGene

Unique, robust,
room-

temperature
preservation
solutions for

nucleic acids,
biospecimens

and bioreagents
for in the living

ectors

http://www.biodiscovery.com/index/imagene
13

November
2021
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