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The development and progression of colorectal cancer (CRC) have been associated with genetic and epigenetic

alterations and more recently with changes in cell metabolism. Amino acid trans-porters are key players in tumor

development, and it is described that tumor cells upregulate some AA transporters in order to support the increased

amino acid (AA) intake to sustain the tumor additional needs for tumor growth and proliferation through the

activation of several signaling pathways. LAT1 and ASCT2 are two AA transporters involved in the regulation of the

mTOR pathway that has been reported as upregulated in CRC. Some attempts have been made in order to

develop therapeutic approaches to target these AA transporters, however none have reached the clinical setting so

far. MiRNA-based therapies have been gaining increasing attention from pharmaceutical companies and now

several miRNA-based drugs are currently in clinical trials with promising results.

colorectal cancer  amino acid transporters  LAT1  ASCT2  miRNAs

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers worldwide, with 1,849,518 new cases in 2018, being

the third most common cancer . Currently, CRC accounts for approximately 10% of all diagnosed cancers and it

is the world ́s second most deadly cancer . CRC is the second most common neoplasia diagnosed in women,

and the third in men, being the incidence and mortality approximately 25% lower in woman . CRC development

can be modulated by several factors, being the high alcohol consumption, overweigh, physical inactivity, tobacco

smoking, diabetes mellitus, age, personal or family history of CRC well established risk factors . Although the

mortality rates have declined due to the improvement in diagnosis and treatment, CRC still represents one of the

most lethal cancer types . Furthermore, metastasis is also found in, approximately, 15–25% of CRC cases at the

diagnosis, and increase to 50% during the course of the disease . The advances in the pathophysiological and

molecular CRC knowledge allowed the increase of the treatment options, but these new therapeutic approaches

were proven to be more effective in patients with non-metastatic disease . Thus, it is imperative to clarify the

mechanisms involved in disease progression, aggressiveness and metastasis formation in order to improve the

patients’ follow up and to identify new therapeutic approaches.

2. Amino Acid Transporters Deregulation in CRC: the Impact
of LAT1 and ASCT2

It has been nearly a century since the discovery that normal and tumor cells differ in energy metabolism, with tumor

cells presenting a higher need of nutrients, being the AA bioavailability crucial to support cell proliferation and
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growth . Amino acids can be classified into three groups: (1) essential AA (EAA), if the organism is not able to

synthesize them and needs to acquire them from the diet; (2) non-essential AA, if they are synthesized in sufficient

quantities by the organism or (3) conditional AA, if are usually nonessential, except in times of illness, trauma or

stress were they become conditionally essential .

In addition to their need in protein synthesis, several amino acids have other roles in supporting cancer

development. One example is glutamine, the most abundant AA that participates in energy production, redox

homeostasis, macromolecular synthesis and cell signaling . In fact, the commitment of glutamine in the these cell

processes makes this AA conditionally essential in conditions characterized by a high proliferation rate, such as

cancer, in which endogenous glutamine synthesis is not sufficient to satisfy the cell need .

Since AAs are hydrophilic, they need selective transport proteins in order to cross the plasma membrane of the

cells. There are approximately two-dozen amino acid transporters in humans, and cancer cells must regulate one

or more of these transporters to satisfy their nutrient demand . LAT1 (SLC7A5) is a transmembrane transporter

involved in the import of large and neutral AA such as leucine and phenylalanine, in exchange for intracellular AA,

such as glutamine . According to various studies, LAT1 is highly upregulated in multiple human cancers,

including gastrointestinal cancers . In fact, Hayase and coworkers found a higher expression of LAT1 in

72.4% of CRC cases when compared to colonic adenoma cases, concluding that LAT1 could be a marker for

malignant lesions . Furthermore, Zhang and colleagues also found an association of higher LAT1 expression

levels to poorer outcomes and shorter survival in several types of cancer, including CRC . The higher LAT1

expression in cancer cells shows the importance of this AA transporter in the maintenance of AA nutrition in cancer

cells . Studies conducted by Elorza and coworkers show that the upregulation of LAT1 is involved in the

increase of mTORC1 activity through HIF2α activation, showing a relationship between the hypoxic

microenvironment, HIF2α and LAT1 . Furthermore, LAT1 mediates leucine uptake with high affinity, which is a

key AA activator of the mTOR signaling pathway . However, for mTOR activation, the functional LAT1 is coupled

to ASCT2, another AA transporter involved in glutamine uptake .

The ASCT2 (SLC1A5) is expressed in most human tissues including the large intestine and CRC tumor cells, and

is essentially responsible for the influx of glutamine inside the cells, inducing asparagine, serine and threonine

efflux . According to Liu and colleagues, ASCT2 expression levels can modulate the migration capacity of

CRC cells, being the overexpression of this AA transporters associated with a poorer patients’ prognosis . In

fact, ASCT2 is upregulated in several cancers, including triple-negative breast cancer, CRC, lung cancer,

melanoma, neuroblastoma, glioblastoma and prostate cancer . Some studies in glioblastomas and

neuroblastoma support the involvement of the activation of c-Myc, n-Myc oncogenes in the inducing of ASCT2

expression .

Metabolic reprogramming is a well-known hallmark of cancer that has been gaining increasing attention in the last

few years due to its importance in cancer cells viability and growth . Cancer associated metabolic

reprogramming influences intracellular and extracellular availability of metabolites that will result in alterations in

gene expression, cellular differentiation and also in the tumor microenvironment . Glutamine is considered to be
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a crucial nutrient for cancer proliferation due to its ability to donate its nitrogen and carbon to several growth-

promoting pathways . In 2012, Mootha and colleagues reported that tumor cells have a high necessity of

glutamine uptake compared to other AA and, consequently, a glutamine starvation can interfere with tumor

metabolism inhibiting tumor proliferation and progression . More recently, Varshavi and colleagues, described a

molecular association between CRC that present oncogenic KRAS mutation and glutamine metabolism, since

these cells exhibit special metabolic phenotypes, including differences in glycolysis, glutamine utilization and AA

metabolism . Furthermore, glutamine is described as a signaling factor in the uptake of AA for the activation of

mTORC1 . Thus, the upregulation of AA transporters have an important role in the support of the high-level

protein synthesis for continuous cancer growth and proliferation . The mTOR pathway is well described as

deregulated in CRC, and the availability of AA functions as a regulator of this pathway, since a high AA

microenvironmental bioavailability induces mTOR activity and consequent biological processes, such as protein

translation . Some studies report a relationship between LAT1 and ASCT2, with a two-step mechanism of these

AAT being able to regulate mTOR pathway . Firstly, ASCT2 regulates the intracellular concentration of

glutamine, and in turn LAT1 uses this intracellular glutamine as an efflux substrate, in order to regulate the uptake

of extracellular leucine, which will lead to an activation of mTOR signaling and consequent induction of cell growth

and proliferation  (Figure 1). Furthermore, according to Rajasinghe and coworkers, the inhibition of glutamine

uptake in proliferating cells, through the inhibition of glutamine transporters LAT1 and ASCT2, results in the

inhibition of cell proliferation and induces apoptosis, through the downregulation of the mTOR pathway . Thus,

the inhibition of LAT1 and ASCT2 expression levels could represent a promising therapeutic approach for CRC

since it would reduce the AA intake, consequently causing mTOR pathway inhibition and compromising cancer cell

proliferation.
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Figure 1. Representation of the interplay between ASCT2, LAT1 and mTOR pathway in colorectal cancer (CRC).

This image was created using BioRender.

The use of pharmacologic approaches against LAT1 and ASCT2 in cancers with overexpression of these two AA

transporters seems be a promising strategy. In fact, over the last few years there was investment in the

development of drugs against LAT1 and ASCT2 . The design of drugs against these two AA

transporters usually follows an approach based on substrate analogues, which act as competitive inhibitors . In

the case of ASCT2 there are also been developed monoclonal antibodies against its cell surface domains .

However, it is imperative to keep in mind that the block of AA transporters could be associated with the

upregulation of compensatory and redundant pathways, being crucial an accurate overview of all network involved

in the process . In addition to that, there are some limitations in the use of pharmacological inhibitors due to the

low affinity for the transporter and low selective capacity observed to cancer cells. Thus, these data highlight the

need for a deeper understanding of other therapeutic approaches for the selective inhibition of LAT1 and ASCT2 in

CRC.

3. Applicability of microRNAs as Therapeutic Agents
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MiRNAs are a family of short non-coding RNAs with a length of approximately 19–25 nucleotides that post-

transcriptionally regulate gene expression, with an important role in several biological pathways, including cell

proliferation and differentiation . MiRNAs can regulate the expression of more than 50% of protein-coding

genes by binding to their target mRNA transcript and causing its degradation or translation repression .

Regarding their applicability in the clinical setting, a growing number of evidence suggests a significant utility of

miRNAs as biomarkers for pathogenic conditions, modulators of drug resistance and as therapeutic agents for

medical intervention in almost all human health-related conditions . The pleiotropic nature of miRNAs

makes them particularly attractive, both as drugs or drug targets, for diseases with a multifactorial origin and no

current effective treatments . Overall, the current evidence suggests a viable future for miRNA drugs in

diseases with no current effective treatments, such as CRC.

4. miRNAs that target both LAT1 and ASCT2 and their Impact
on CRC

From the 33 known miRNA that target both LAT1 and ASCT2, only 16 have already been described in CRC (Table

2). However, in terms of the miRNA:mRNA target interaction with LAT1 and ASCT2, none of the miRNAs have

been yet validated for CRC. 

Table 2. Selected miRNAs’ impact on CRC.

miRNA Expression Sample Type Effect Reference

Hsa-miR-122-5p

Down
CRC Tissue and

cells

Increase in cell proliferation,

migration and invasion through

the upregulation of CDC25A

Yin 2020 

Down CRC Tissues

Upregulation of the PI3K/Akt

pathway through upregulation of

TRIM29

Asadi 2019

Up

 

CRC liver

metastatic

tissues

Not described Liu 2019 

Up Serum and HT-

29 and SW480

Lymph node metastasis

biomarker and cell migration

Qu 2018 
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cell lines inducer

Up CRC Plasma

Worse prognosis in metastatic

patients and shorter RFS and

OS in non-metastatic patients

Maiertheler

2017 

Hsa-miR-1224-3p Up CRC Tissues
Upregulated in E cadherin

positive tissues
Lin 2017 

Hsa-miR-1260a Down CRC Serum Not described
Wang 2017

Hsa-miR-1260b

Up HCT116 cells
Chemoresistance to 5-FU

through upregulation of PDCD4
Zhao 2018 

Down SW480 cells Downregulated by STAT3-siRNA
Zhang 2014

Up

Carcinoma vs

adenoma

(tissue)

Not described
Slattery 2016

Down CRC Serum Not described
Zhang 2017

Up DKO-1 cells Enriched in KRAS mutant cells Cha 2015  

Hsa-miR-1273g-3p Up LoVo cells Proliferation, migration and

invasion through activation of

ERBB4/PIK3R3/mTOR/S6K2

pathway

Li 2018 
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Hsa-miR-1273h-5p Up CRC tissues Not described Du 2018 

Hsa-miR-149-3p Down
HCT-8 and

HCT-116 cells

Chemoresistance to 5-FU

through upregulation of PDK2
Liang 2020

Hsa-miR-15b-5p

Down
CRC tissues

and cell lines

Chemoresistance to 5-FU

through upregulation of XIAP

Zhao 2017

 

Up HT-29 cell line
Cell growth and inhibition of the

proapoptotic pathway

Gasparello

2020 

Down

KRAS mutated

CRC tissues vs

wild type CRC

tissues

Not described
Milanesi 2020

Hsa-miR-16-5p Down
CRC tissues

and cell lines
Upregulation of VEGFA Wu 2020 

Hsa-miR-193b-3p

Down

CRC tissues vs

adjacent normal

tissues

Shorter OS of CRC patients and

upregulation of STMN1
Guo 2016 

Up CRC tissues Downregulation of RAD51 Kara 2015 

Hsa-miR-3199 Down SW620 cell line Upregulation of SMAD4 Yan 2018 
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Hsa-miR-383-3p Down

CRC tissues

and HT-29 and

LoVo cell lines

Upregulation of APRIL Cui 2018 

Hsa-miR-4690-5p

Down CRC Stool Not described
Ghanbari

2015 

Up CRC tissues
Upregulated in CIMP high/MSI

CRC tissues
Mullany 2016

Hsa-miR-619-5p Down

CRC tissues vs

adjacent normal

tissues

Upregulation of MALAT1,

lymphovascular invasion

perineural invasion, shorter DFS

and shorter OS

Qiu 2016 

Hsa-miR-6821-5p

Down

SW480 CSCs

vs SW480 wild-

type

Not described Zhou 2019 

Up CRC tissues Not described Du 2018 

Hsa-miR-6883-5p Down
TCGA dataset

and Cell lines

Upregulation of CDK4 and CDK6

and cell growth stimulus
Lulla 2017 

In table 2 are listed the miRNAs Through the analysis of Table 2 we can observe that some of the miRNAs present

opposite results regarding their expression levels, which may be related with the type of biological sample from

which their expression levels are analyzed. Regarding their effects on CRC, the deregulation of miR-122-5p, miR-

1273g-3p, miR-16-5p, miR-3199, miR-383-3p, miR-619-5p and miR-6883-5p was associated with the upregulation

of important players of oncogenic pathways, such as TRIM29, CDC25A, PI3K/Akt, mTOR, VEGFA, MALAT1,

SMAD4, STMN1, APRIL and CDK4, with an impact on cell proliferation, invasion and migration. In addition to that,

miR-1260b, miR-149-3p and miR-15b-5p were reported as associated with resistance to 50-FU treatment through

the upregulation of PDCD4, PDK2 and XIAP, respectively. Moreover, only three miRNAs were associated with

clinical endpoints. Higher plasmatic levels of hsa-miR-122-5p were associated with worse prognosis in metastatic

[71]

[72]

[73]

[74]

[75]

[63]

[76]



LAT1 and ASCT2 Related microRNAs | Encyclopedia.pub

https://encyclopedia.pub/entry/8056 9/16

patients and shorter RFS and OS in non-metastatic patients, while lower levels of CRC tissue hsa-miR-193b-3p

and hsa-miR-619-5p were associated with shorter OS. Moreover, lower levels of CRC tissue hsa-miR-619-5p were

also associated with shorter DFS, lymphovascular invasion and perineural invasion.

Taking this information into consideration, we can conclude that miRNAs that target both LAT1 and ASCT2 play an

important role on CRC development and aggressiveness and could be used as potential new therapeutic

approaches for this neoplasia, but further studies are needed.
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