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Foams and emulsions are collections of different kinds of bubbles or drops with particular properties. They provide
exceptional sensitive bases for measuring low concentrations of molecules down to the level of traces using
spectroscopy techniques, thus opening new horizons in microfluidics. The optical and spectral properties of foams
and emulsions provide information about their micro-/nanostructures, chemical and time stability, and molecular

data of their components.
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| 1. Foams

Foam formation is a highly hydrodynamic process that necessitates the presence of surface-active agents which
can adsorb at foam interfaces, lowering their free energy and, as a result, decreasing the overall free energy of
such an interface-dominated system. Immiscible fluids (like liquids and gases, considered as such since gases, in
general, may be dissolved in liquids in given proportions) can be formulated into a product only by stabilizing the
interface surrounding the dispersed bubbles against coalescing or fusing [Xl. Foams’ stability is, therefore, a critical
subject in a variety of applications in environment and meteorology, foods, geology, agriculture, materials science,

biology, medicine and pharmacy, petroleum production, mineral processing, and home and personal care products
(2131,

The collapse of the foam is associated with three major destabilization mechanisms: (i) liquid drainage through thin
films separating gas bubbles, mainly due to gravity and/or capillarity forces, resulting in thinner films; (ii) bubble
coarsening (or Ostwald ripening) resulting from gas diffusion from smaller bubbles to larger ones, causing growth
of the larger bubbles and a decrease in the overall number of bubbles; (iii) bubble coalescence occurring due to
rupturing of thin films caused by insufficient elasticity, leading to a decrease in the number of bubbles and increase
in their volumes 4,

The lifetime control of liquid foams, which presents significant interest in various research fields, including physical
chemistry, materials chemistry, colloid science, nanotechnology, biochemistry, or medical applications is possible
by adjusting the rate at which the three main mechanisms of foam destabilization work. Adjusting the foam lasting
can be made by several methods, like changing solution conditions (pH, temperature, and ionic strength), using

surfactants or application of an external field (light, magnetic and/or electric) &,
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From molecular point of view, the surfactant's characteristics like chemical repeating unit, end functional groups,

molecular weight, and molecular weight distribution have distinct effects on a foam’s parameters €.

Solubility is critical in many surfactant systems, especially for a homogenous series of straight chain aliphatic
surfactants. Surface activity increases with chain length in the short alkyl chain length regimes, but above a critical
value, solubility decreases with increasing chain lengths, resulting in a maximum or optimum value in surface
activity arising from a balance between the two opposing effects. This is known as the Ferguson effect, a theory
that sustains that a balance between lyophilic and lyophobic nature maximizes surface activity 4. It was used to
explain why an increase in the molecular weight of the linear alkyl chain of a homogeneous series of surfactants
causes an increase in surface activity (foaming) until a decrease occurs at a critical chain length. This fact is

important, not only for foaming, but also in processes such as detergency and emulsification &,

1.1. Surfactants

Surfactants are important “molecular ingredients” used in foams. They may have a significant influence on optical
and spectral properties associated with microfluidic behavior (such as stability) and the entry will shortly present

some of the most common compound classes used in this respect.

The surface-active agents are usually low molecular weight surfactants BI[29 byt they can also be amphiphilic
polymers 2 proteins 12, as well as their mixtures [L3IL4ISI16] Thejr main role is to reduce the surface energy of
the phase boundary. To be efficient, the foam stabilizer has to produce an irreversibly adsorbed elastic layer at that
interface preventing film breaking between bubbles (coalescence), gas diffusion (coarsening), and gravity driven
liquid flow (drainage) (X2, Surfactants have a very long history, the first records dating back almost three millennia
BC 18 They have even been the subject of investigation into the origins of life; meteorites containing lipid-like
compounds have been found to assemble into boundary membranes and may be an interstellar prebiotic earth
source of cell-membrane material 12!, Surface active agents are classified as amphiphilic compounds due to the
presence of both hydrophilic and hydrophobic groups in their chemical structure 29, The dual nature of the
surfactants controls their assembly in the bulk. As shown in Figure 1, surfactant molecules can form aggregates
including micelles, in which the hydrophobic tails compose the core of the aggregates and the hydrophilic
headgroups are in contact with the aqueous phase.

https://encyclopedia.pub/entry/18478 2/24



Foams and Emulsions | Encyclopedia.pub

Q‘E«Q?Pﬁ

Spherical micelle ’_‘Q!_F)?Q‘h

Reverse micelle

Non-polar

-——————————— -“IOQ,‘__Q"
o

Cylindrical micelle Monomers

g g g g g g 5 g . Inverted hexagonal

EEE%%EEE phase

Bilayer lamella

solvent )

Figure 1. Surfactant molecular aggregates.

Various types of aggregates including spherical or cylindrical micelles and bilayers can be found according to the
spontaneous curvature of the surfactant monolayer 2L, Apart from micelles, surfactant molecules can also form

other types of organized assemblies in solutions, for example, reverse micelles 22,

Low molecular mass surfactants are small molecules (with hydrodynamic radii of approx. 0.5-2 nm) containing a
hydrophilic and a hydrophobic part. Typically, they are differentiated based on the polar group of the hydrophilic
part. This part can be non-ionic 231241231 (yncharged) ionic 29 (cationic—positively charged, and anionic—
negatively charged) or amphoteric 28 (zwitterionic—both positively and negatively charged). The charges of the

amphoteric surfactants can be permanent or can be influenced by the pH of the medium to which they are exposed
[27][28]

The effect of some non-ionic surfactants on the stability of polidocanol (POL) foams used in venous sclerotherapy
(for instance) revealed that glycerin concentrations of up to 10% v/v and Tween80 concentrations of up to 20%

could be of interest in terms of POL foam stability and its use in such medical applications 22,

Polymeric surfactants have far higher structural complexity than low-molecular-weight surfactants, which can lead
to substantially different behavior of foams. For example, the number and distribution of hydrophilic and
hydrophobic moieties along the chain may influence the polymeric agent's surface activity B9, Most of the
polymeric surfactants reported in the literature are synthetic because it is very difficult to isolate this kind of
compound from natural sources. However, proteins, which act as foams/emulsions stabilizers in natural systems
are the most well-known examples of natural surfactants. Among them, caseins are a fast-developing family of

natively unstructured proteins (1],
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Recently, new surfactant molecules have emerged, and there is still room for novel compounds built for specific
purposes and applications (such as nanoparticle synthesis and more diverse and environmentally friendly
consumer products). The kind and positioning of extra functional groups are crucial for new functionalized
surfactants. Slight changes in the molecular structure of traditional surfactants result in a rich morphology of foams
that are investigated using increasingly advanced techniques, hence improving our understanding of their

capabilities at the molecular level.

Surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive
attention. The effects of anionic (sodium dodecyl sulphate (SDS)), cationic (dodecyl dimethyl benzyl ammonium
chloride (1227)) and non-ionic (fatty alcohol polyoxyethylene ether (AEO)) surfactants on zebrafish larval behavior
were evaluated by Wang et al. B2, Their results revealed that 1227 and AEO at 1 pg/mL were toxic to larval
locomotor activity and that SDS had no significant effects. All three surfactants incurred concentration-dependent

response.

The skin toxicity of four ionic surfactants and fourteen non-ionic surfactants was investigated by Lémery et al. in
connection to their structure/toxicity relationship. There was a clear difference between ionic and non-ionic
surfactants. lonic surfactants are the most toxic if they are soluble in water. Crystalline ionic surfactants of low
solubility show low toxicity. Since the molecular parameters of ionic, non-ionic, water-soluble, and crystalline
surfactants are different, a universal parameter was introduced, the order parameter, describing the orientation

ordering of surfactant molecules at interfaces 331,
1.2. Particles as Emulsion and Foam Stabilizers

The study of nanometric particles and their interaction with fluid interfaces is an interesting and topical research
subject in the field of their applicability in colloids domain [B4I33186] Nanoparticles (NPs) are employed frequently in
association with surfactants, as stabilizing agents of disperse systems like foams and emulsions B8l Many
experimental and theoretical papers are available in the literature about the nanostructure of foam systems,

however, the basic mechanisms underlying the stabilizing effect of NPs is still a topical issue 2.

The use of NPs may offer an alternative to surfactants used for foam and emulsion stabilization, especially in the
presence of oil. The NPs can strongly adsorb at the interface and stabilize foams at high temperature and salinity
[36][40141] ' A new generation of NPs has been manufactured using affordable and low-cost raw materials such as fly
ash or silica 42, The critical parameter for SiO, NPs in the elaboration and stabilization of liquid foams is their
hydrophilic or hydrophobic character (property related to wettability) and the three-phase contact angle (measured

with respect to water). It was found that the maximum diameter of particles able to stabilize liquid foams is below 3
pm [43],

Shojaei et al. have investigated the effects of surfactants with different charges (anionic, cationic, and non-ionic) on
foam stability in the presence of charge-stabilized silica (SiO,) NPs. Their results show that the nature and

magnitude of the stabilization strongly depend on the nature of the surfactant, its concentration, and the
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concentration of NPs. Both results from the bubble-scale and the bulk-scale experiments suggest that compatibility

tests between surfactants and NPs are a pre-requisite to obtain stable foams 4!,

The synergistic effect of a surfactant and NPs or the modification of the surface of solid NPs through
physicochemical interactions with surfactants may enhance foam stability and generate stronger foams than the

use of surfactants alone. Several studies reported the ability of mixtures of surfactant and NPs to enhance foam
stability (4311461,

A promising drug delivery approach to deal with conventional cancer therapy drawbacks includes the application of
multifunctional nanotechnology-driven drug delivery systems, where micelles, drug conjugates, NPs and
nanomaterials have shown important advances. In this regard, the development of a novel nanoscale drug delivery
system-based nanotherapeutic that combines chemotherapy and photodynamic therapy using 660 nm light
irradiation into one single platform to achieve synergistic anticancer properties to overcome cisplatin resistance
was reported. Mesoporous silica NPs (MSNs) with diameters of about 100 nm and slightly positive surface charge
were used as drug delivery vector to conjugate cisplatin prodrug and to load the photosensitizer chlorin e6 (Ce6) to
enable a dual drug-loaded delivery system MSNs/Ce6/Pt 248l Kumar et al. report the development of a 100 nm
MSNs-based enzyme-responsive material for colon-specific drug delivery. Guar gum, a natural carbohydrate
polymer was used as a cover layer to contain a model drug, such as 5-flurouracil (5FU) within the mesoporous
channels of MSN. It was shown that MSNs maintained their discrete nanoparticle identity after guar gum capping
through non-covalent interaction. The release of 5FU from guar gum capped MSN was specifically triggered via

enzymatic biodegradation of guar gum by colonic enzymes in the simulated colonic microenvironment 481,

Surfactants have an impact on the physicochemical characteristics of NPs that goes beyond stability. Surface
phenomena induced by surfactants have a significant impact on their interactions at the cellular level 2. As a
result, depending on the type of surfactant, the interaction with cells can be increased or decreased. Voigt et al.
conducted a blood-retina barrier passage study as a blood-brain barrier (BBB) model of fluorescent
polybutylcyanoacrylate NPs with different types of surfactants (non-ionic, anionic and cationic), size (67—-464 nm)
and zeta-potential. NPs’ size and charge had no influence on BBB passage and cell labelling. Moreover, in the
context of NPs with reduced size (down to 87 nm) no BBB crossing was observed, even adding SDS to the non-

ionic surfactant 59,
1.3. Spectral Studies of Foams

The optical processes, like absorption and scattering, jointly govern the light propagation in turbid environments. In
this respect, the study of optical properties of surface-active agents might be useful in order to elucidate the
mechanisms involved in foam generation and its behavior in connection with different external parameters that may
affect foam characteristics. To further understand their function in foam formation, Xiang and al. 21l investigated the
elease_of non-cellulosic components from swollen wood fibers in the presence of an anionic surfactant (SDS) at
lu?‘ﬂlcglmé'a r%k?&?&s Between SDS and the leached, non-cellulosic components, highly surface-active

aggregates develop, which do not form in the presence of cationic or nonionic surfactants. Using analytical
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that diminish the maximal capillary pressure of coalescence and hence reduce foam stability® .
.1. Emulsifiers
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emulsions include hydroxyapatite NPs, silica, clay, magnetic Fe30, NPs, carbon nanotubes and chitosan NPs 22
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stress. The advantage of this method is that it can be repeated an unlimited number of times [24[111][112]
Raman spectroscopy is a powerful noninvasive technique to assess the structure and dynamics of a system at
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TRUSIORS WL S Feehigh SYRER\AIl BIRRS GO PR 2P G P B R Y Fodr B BRIty N
RS, e wathdRagis riRPIRE Bk ISHRSYRN adRidheARRENSing o T IRIRRRALANE 310uSy 1 B3RE
B OIRsi S H R RUIR R RS AL B 5P Y e SHDRREAAS LS S B PSR RHR S RS SR RBY RS
R RS S8iSafts SR SN UAR S nREY B, DN B S b R MR NG SITE Sy deP FAYN B Kb PR trarental
parameters such as concentration and temperature[118],

Qv =

0o

Raman spectra were also recorded at various times after foam samples were prepared. The Raman spectra
M e e o S e g Sy R e R
tgheenedriértll%p]sions of the droplets were between 1 um and 20 um. These studies show the importance of the
absorption and scattering properties obtained from the UV-Vis spectra, which give information about droplets’

shape, size distribution and chemical composition®17] |

UV-Vis-NIR reflqganee Aspectrall ofI ,;,(/)dium tetradecyl sulfate (STS) in water and oily vitamin A emulsions showed an
etoxisclerol 2%
increase in reflectancpfafier the sample was exposed to laser radiation, suggesting0 flf:crease in size of the

st after preparation

droplets (Figure 5). This finjéfmig_g\f@%%bgpgﬁﬁd by surface tension analyses, optical spi.lectroscopy analyses and
dynamic lightgcatteringmeastlitAferRBrietmulsiBmd-before and after laser irradiation 12811119
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Ergupas, WW&%@&B&%&%@E&%&%W@H g DerEpton sOUBHAS S, Bt Hik gRfseALREEdHBr B8
A PRckS R e BIESPRRIYscopy images (reflected light-DIC mode, 50X magnification) of the same samples.

URR\BESTHIE-AIRAN e IR RR BRGRLA AL AL BB ARG BHipRENR LS RVHRIARS 1 EIStREARG b
akesHhAlindt gt hnsarsrrdie Metritic eor BrasRiGireRRIMIBIRENEHRYE AhRish FamieRs EnR dof
BRAEPHIGe Othite tRNCSABNGy CBR fife UBRALIRIGRVEIRES NSRMAREEE FHBS B MPRIBR PR 0SB UHAE
BYR(AGRIBH2ANR T4t HiePIfs SE8s AR IISReETadivdMSi TaK B MY grizdaser is used to illuminate a sample, the

transmitted or backscattered light generates a speckled interference pattern, revealing the dynamics of intrinsic
BTt a shenaesofsp asseniPol degatibation o @xtrinal sress) tiRetekismpeedyaitticdsdtttoscopy (PM-IRRAS)
helped to determine the best position of the components (Bovine Serum Albumin—BSA, Tannic Acid—TA,
EHifussTranaySEinn FPRrrasCeRY SPI ARG BIetMFRintYsSAPBN-Shiabia IPVERYEHS WS SlrHrHER QlaRaHS
GRllidah susRA Rte PrRciRRREIE ARt RG iRy dPIGTaHEEM dhe P DRI ¥pamiasief average bubble

dimensions during foams’ coarsening or of the liquid fraction of a foam during drainage”8 .

UV-Vis transmittance spectra of O/W toluene emulsions showed that their turbidity decreased over time. These
FRGGYRSHEALON QoiommteP VW 9VRSHHIRSIIALC AR AURRRNG AIAICH Q5 DURRIER FERANIPUr ISTB ARG
A RuAYREAE, GVIDTIShAIIGA AR LRERUIB AR I HEHRUTEAYIRE Shai aeamifisorytaee of the foam, through

backscattered lightZ4! ,

Other powerful tools in emulsion analysis are Fourier transform infrared (FTIR), attenuated total reflection FTIR
{PUG FOGH ) @ST REORENF A REREH!ID dEREARBB AT R UGS B AR IS TRYS AR s riSHOMR thionitABEIR At
It ARIBIAILIC HIEBTHPUNBR: Bt RYRRIR, HHOAMIAY FELTR dAntBRmBRDRYIRS0aT MeSQRRIN-IRRM ofidnd
BARlieRsT, raixatenHapeRding ABLG aue Rt R dar and amplivde of Srar G daerrlissiskiss Bhah fhea
EBREENNATGPRIE S 1% SRAYNGHERTABRM itE WSiSROBIF dnad thRfRGA¥ LIRS SHLEREAN dHARCHPNS 1 astaRiAlRg

with intrinsic rearrangements of bubblesZ8 .
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ibFADWES Invabecsapiey stl tly, iReasiaya gt setastal eeb pordié cattiansaofu #w € farhafst atirg @deam)  wakowing de
sbbjEve the pelyiteiimsbeaf STtnmioleaseb8efled that for small amplitudes of the strain, the response in bubble

rearrangement is linear, but if the strain amplitude is larger than 0.05% the response is nonlinear.
FTIR and Raman spectroscopies were also employed to study vinyl acetate-based (VAc-based) emulsions usually

Aliae D \WWiSpaiiotiittesl iNsighte eyt fREIRuADR dydamicsovitean asheqrestress op\afpliRdoanirsiceceygsiulbn idgudtied
Warrbdsechendigsmrer dcb i aliffbee hiLbihepths amicd edepeime o théhaedditaio s iph thalkate s éheostresnasa@astnd dre
m&aosno pie asicematios) dEt@rsioedsheecirhendefenhatiovAs aylpmigrsowhalize dnoramasrgeimdnieretats iaied
BACRAATIR wkteotesd gfolyarmydgitmpbokl applistdtstiearpfahéaneenuisitial28hear, the deformation appears because of
bubble reorganization induced by nonaffine and directed shear; and for fast shear, the foam bubbles are moving

EQMBrAMY, RPSGHESErR Ry Ul iaed rdupladly the effect of polyglycerin-polyricinoleat emulsifier concentration on
the molecular stabilization mechanisms of W/O emulsions of anthocyanin-rich bilberry extract water solution

beyeraedlysis afntieelicoackenmtiglyceride (BILIE) foibphéseddhevitiodiforzodis pEriee Gteld beatthirey gdleatitnabahd
teaspanallyz ed dorelaticatduthetioroleftil arscatteratig nstan sitgtpresit nitserMac deTays stecyupbend |ladd ds epear tetthis cane,
Hesshaligiesctineeaydsdier duan centnadiatiffeirenthproaegsest-H0bble, rdmvangemestgnificary fefect agmgemutisibns
stapitizaiive f82theFongersitaitay, emd|SomyfaHRAATIEN ok tseicotieids phawkss thaheheeditsiien jnivegesdho
theahoteauticagV@¥ent O—H bonds, leading to a modification of the hydrogen bond network. This also implies a

reduction of intermolecular interactions in the interfacial water layer23],
Marze et al. showed that DWS helps distinguish between foams subjected to slip and foams subjected to shear.

Ahetsliy \stlodytyusas deTéRns@ettobeapaxionienalytee thelddsistasiiEation of emulsions used in cosmetics and

pharmaceutics. Reduction of the unsaturation index, increase in the carbonyl index and broadening of the C=0

NaHbsRrCIHRIENR vemeapIty of dmakienstEnBURBafiduaBRSE IR CAEL SR BRINAS R eV qHatoREsTalfRERIY
ARpelr R HETRoRR rsh NG Mhed dacahib 18IRPeerivZBIap daRtIRiRS HiRAERaTRTRAHBA oA
therHeuBRigstdRvS: el matagfes high-liquid-fraction foams. Multispeckle DWS enabled studying the non-local
dynamics at different times, showing that during aging of dry foams, a substantial reorganization of bubbles is
FERponsthldider infersoitien bbis(2-etis@hed/iysthio Suidireath/ n dvaoss EphsikQAd Ysadoiawelviasens niner tenged stais
dyalnécs thetsthiBeofindeay@bdllisé cantbomaviectioof MGt s#se microemulsions. Four bands were recorded for
O-H stretching vibrations and they were assigned to the trapped water in the palisade layer (3610 cm™1), the water
bound to the sulfo group (3540 cm™1), the free water (3440 cm™) and to the water bound to the sodium counterion
(3225 cm™1). Gauche and trans conformations of AOT molecules were identified based on the absorption bands at

1739 cm™t and 1725 cm™1, originating from carbonyl stretching vibrations227,

O-H stretching bands were also studied to determine absorptions of bulk and interfacial water from sodium dioctyl
sulfosuccinate reverse micelles. The study showed that the main absorption on the red side of the O—-H band

originates in the bulk water, and the interfacial water is responsible for the absorption on the blue side O—H band
128

The modifications of O-H stretching bands were also assessed to study the structure of water in W/O
microemulsions utilized to synthesize oxalate precursor NPs. NPs are obtained through a precipitation reaction in
the core of the reverse micelles formed when two initial microemulsions are mixed. In order to identify the water

structure, the O—H stretching band was decomposed into three components, each corresponding to a different type
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of hydrogen bonding. The findings lead to the conclusion that after the synthesis of NPs, the number of bound

water molecules was increased 1291,

FTIR spectroscopy was one of the techniques employed to determine the structural changes of proteins
incorporated in W/O emulsions. This method allowed to determine that the secondary structures of BSA and
human serum albumin (HSA) changed after their incorporation in emulsions 139, ATR-FTIR measurements allowed
to determine the heat-induced modification in the structure of edible coconut protein concentrate (CPC), which is

also used as oil-in-water emulsifier231l,

The effect of temperature on emulsion stabilized by soy lecithin was studied also through FTIR spectroscopy.
Analysis of bands originating in —OH vibration, —CH, stretching, H—-O—H bending vibrations, and P=0O, C-O-C, and
P—O-C vibrations allowed to determine that the emulsions stabilized by phospholipids remained stable when the

temperature was varied, as opposed to the control emulsion that had no emulsifier added[232],

FTIR spectroscopy was useful in determining the chemical groups in the crude oils responsible for emulsifications.
This study is important for separation of oil from O/W emulsions, which is a significant problem for the petroleum
industry (1331,

As in the case of foams, the internal dynamics and structure of emulsions can be studied with spectroscopy

techniques based on multiple scattering of light, like DWS.

Marze et al. employed DWS in back- and forward-multiple scattering to evaluate the in vitro digestion of eight
emulsion samples, determining that the type of triglyceride in the emulsions is the main parameter to influence the
digestion. The advantage of using DWS is that the emulsions can be analyzed at their normal appearance, without
the need to dilute them. When comparing the particle size distribution (PSD) determined through DLS with the PDS
determined from DWS measurements for multiple scattering, Marze et al. found the results to be in good
agreement. In order to determine the PDS, the statistical analysis of cumulants and moments employed for single
scattering was applied to DWS data. This method could not have been successfully applied to long term digestion.
Forward-scattering DWS measurements, complementary to nuclear magnetic resonance diffusion measurements,
permitted to determine the diffusion coefficients. It was observed that during digestion, the transitions were from a

droplet to a vesicle and afterwards to a micellel234],

DWS has the potential to monitor the manufacturing process of turbid pharmaceutical emulsions, being able to
offer information about the dynamics and the statics of the emulsions. Continuous DWS analysis during generation
of pharmaceutical emulsions can give data about optimal homogenization conditions, showing when to stop the
manufacturing process in order to prevent overprocessing of emulsions. Emulsion dynamics correlated with static

analysis were in agreement with the modification of the droplet size distribution, during emulsion generation[32],

A series of model pharmaceutical emulsions were analyzed through DWS and the results were compared to other

stability analysis methods. Obtained results regarding the stability were similar to those from the other methods.
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This, along with the fact that the technique is non-invasive, fast, and needs only small volumes of emulsions,

makes DWS suitable for analyzing the stability of pharmaceutical emulsions 1381,

A new model for fitting DWS measurements of emulsions during their creaming/ sedimentation is presented in 127,
This model starts from a Monte Carlo simulation of the light that diffuses in the volume of the emulsion in order to

determine the averages and the distributions of the droplet size and dynamics.

DWS proved to be a useful technique not only in pharmaceutics, but also in cosmetics. The stability of cosmetic
formulations was assessed via DWS and it was observed that the instability of the emulsion was higher for larger

values of mean square displacement (MSD) [138],
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