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One of the pillars of experimental sciences is sampling. Based on analysis conducted on samples the estimations for the

populations are made. The distributions are split in two main groups: continuous and discrete and the present study

applies for the continuous ones. One of the challenges of the sampling is the accuracy of it, or, in other words how

representative is the sample for the population from which was drawn. Another challenge, connected with this one, is the

presence of the outliers - observations wrongly collected, not actually belonging to the population subjected to study. The

present study proposes a statistic (and a test) intended to be used for any continuous distribution to detect the outliers, by

constructing the confidence interval for the extreme value in the sample, at certain (preselected) risk of being in error, and

depending on the sample size. The proposed statistic is operational for known distributions (having known their probability

density function) and is dependent too on the statistical parameters of the population.
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1. Introduction

Many statistical techniques are sensitive to the presence of outliers and all calculations, including the mean and standard

deviation may be distorted by a single grossly inaccurate data point and therefore checking for outliers should be a routine

part of any data analysis.

Several tests were developed to date for the purpose of identifying outliers of certain distributions. Most of the studies are

connected with the Normal (or Gauss) distribution (Gauss, 1809) . Probably the first paper which attracted attention on

this matter is (Tippett, 1925)  followed by the derivation of the distribution of the extreme values in samples taken from

Normal distribution (Fisher & Tippett, 1928) . Later, a series of tests were developed - probably the first being

(Thompson, 1935) , subjected to evaluation (Pearson & Sekar, 1936) , and revised (Grubbs, 1950) , (Grubbs, 1969) .

For other distributions such as Gamma distribution procedures for detecting outliers were proposed (Nooghabi, et al.,

2010) , revised (Kumar & Lalitha, 2012) , and unfortunately proved not efficient (Lucini & Frery, 2017) .

The first attempt to generalize the criterion for detecting the outliers for any distribution is (Hartley, 1942) , but

unfortunately the researches on this subject are very scarce and a notable recent attempt should be noted (Bardet &

Dimby, 2017) .

In (Jäntschi 2019)  is proposed a method for constructing the confidence intervals for the extreme values of any

continuous distribution for which also the cumulative distribution function is obtainable. The method have as direct

application a simple test for detecting the outliers. The proposed method is based on deriving the statistic for the extreme

values for the uniform distribution.

When a sample of data is tested under the null hypothesis that it follows a certain distribution, it is intrinsically assumed

that the distribution is known. The usual assumption is that we possess its probability density function (PDF; for a

continuous distribution).

When the PDF is (possibly intrinsically) known, it is not necessary that its (statistical) parameters are known, and here a

complex problem of estimating the parameters of the (population) distribution from the sample can be (re)opened.

The estimation of the parameters of the distribution of the data is, in general, biased by the presence of the outliers in the

data, and thus, identifying the outliers along with the estimation of the parameters of the distribution is a difficult task

operating on two statistical hypotheses.

Taking the general case, for (x , …, x ) as n independent draws (or observations) from a (assumed known) continuous

distribution defined by its probability density function, PDF(x; (π ) ) where (π )  are the (assumed unknown) m
statistical parameters of the distribution, by the way of integration for a (assumed known) domain ("D") of the distribution
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we may have access to the associated cumulative density function ("CDF") CDF(x; (π ) ; "PDF"), expressed as (eq.1):

 

where inf(D) were used in the disfavor of min(D) to include unbounded domains (e.g. when inf(D) = -∞). Please note that

having the PDF and CDF does not necessary implies that we have an explicit formula (or expression) for any of them. But

with access to numerical integration methods (Davis & Rabinowitz, 1975)  it's enough to have the possibility to evaluate

them in any point (x).

Unlike PDF(x), CDF(x) is a bijective function and therefore is invertible all the time (even if we don't have explicit formula;

let "InvCDF" being its inverse, eq.2):

CDF(x; (π ) ; "PDF") is a strong tool simplifying a lot the problem at hand: the problem of analyzing any distribution

function (PDF) is translated into analyzing only one (the continuous uniform distribution) when the series of observed data

(x )  is expressed through their associated probabilities p  = CDF(x ) (for 1≤i≤n) and the analysis can be conducted on

the (p )  series instead (eq.3).

 

2. Extreme values sample statistic

A statistic called g1 was developed to be applicable to any distribution. For a series of probabilities ((p ) ) the (r )

differences are calculated (eq.4):

The g1 statistic is then calculated as (eq.5):

 

3. Extreme values population statistic

The g1 statistic have a very simple calculation formula (see eq. 5) and, as expected, also its CDF formula is very simple

(see eq.6). Thus, for a calculated sample statistic g1 (x ← g1 in eq.5), the significance level (α ← 1-p) is immediate (eq.6).

On the regard of the g1 statistic, the domain for a variable distributed by g1 statistic (see eq.6) have the values between 0

and 0.5 with the mode at p = 0 (a vertical asymptote at p = 0), a median of n ·2  (and having a left asymmetry

decreasing with the increasing of n and converging - for n → ∞ - to symmetry) and mean of 1/2(n+1).

The expression of CDF  is easy to be inverted (eq.7).

Eq.7 can be used to calculate critical values of the g1 statistic for any values of α (α ← 1-p) and n. The critical values of g1

statistic acts as the boundaries of the confidence intervals.

4. Monte-Carlo simulation

For convenience, in the figure (from ) is represented the value of the estimation error in each observation point (999

points corresponding to p = 0.001 to p = 0.999 for each n from 2 to 12) from a MC simulation intended to proof the

connection between (5) and (6).

j 1≤j≤m

CDF(x; (πj)1≤j≤m; "PDF") = ∫
x

inf(D) PDF(t; (πj)1≤j≤m)dt

[14]

if CDF(x; (πj)1≤j≤m; "PDF") then x = InvCDF(p; (πj)1≤j≤m; "PDF") and vice-versa

j 1≤j≤m

i 1≤i≤n i i

i 1≤i≤n

pi ← CDF(xi; (πj)1≤j≤m; "PDF") for 1 ≤ i ≤ n

i 1≤i≤n i 1≤i≤n

ri ← |pi − 0.5| for 1 ≤ i ≤ n

g1 ← max
1≤i≤n

ri

p = CDFg1(x;n) = P(X ≤ x | X follows g1) = (2 ⋅ x)n, α = 1 − p = 1 − (2 ⋅ x)n

-1 -1/n

g1

CDFg1(x;n) = (2x)n → InvCDFg1(p;n) = n√p/2

[13]



Figure. Departures between expected and observed probabilities for g1 statistic (eq.5 vs. eq.6)

 

5. Extreme values confidence interval

By setting the risk of being in error α (usually at 5%) then p = 1-α and eq.7 can be used to calculate the statistic

associated with it (InvCDF (1-α; n)). By replacing this value into eqs. (5) & (6) the (extreme) probabilities can be

extracted (eq.8).

In order to arrive at the confidence intervals for the extreme values in the sampled data (eq.9) is necessary to use (again)

the inverse of the CDF, and at this time for the distribution of the sampled data.

6. Testing samples for outliers

To illustrate the arriving at the confidence intervals for the extreme values in the sampled data, and the use of the statistic

as a test detecting the outliers, two examples are given. First is based on Table 4 from , and the second on Table 11

from .

The same data were tested against the assumption that follows a generalized Gauss-Laplace distribution (eq.10) and a

normal (Gauss) distribution (eq.11).

The (sorted) sample of data is: {4.151, 4.401, 4.421, 4.601, 4.941, 5.021, 5.023, 5.150, 5.180, 5.295, 5.301, 5.311, 5.311,

5.335, 5.343, 5.404, 5.421, 5.447, 5.452, 5.452, 5.481, 5.504, 5.517, 5.537, 5.537, 5.551, 5.561, 5.572, 5.577, 5.577,

5.627, 5.637, 5.637, 5.667, 5.667, 5.671, 5.677, 5.677, 5.691, 5.717, 5.743, 5.751, 5.757, 5.761, 5.767, 5.767, 5.787,

5.811, 5.817, 5.827, 5.867, 5.897, 5.897, 5.904, 5.943, 5.957, 5.957, 5.987, 6.041, 6.047, 6.047, 6.047, 6.057, 6.077,

6.091, 6.111, 6.117, 6.117, 6.137, 6.137, 6.137, 6.137, 6.137, 6.142, 6.167, 6.177, 6.177, 6.177, 6.204, 6.207, 6.221,

6.227, 6.227, 6.231, 6.237, 6.257, 6.267, 6.267, 6.267, 6.291, 6.304, 6.327, 6.357, 6.357, 6.367, 6.367, 6.371, 6.427,

6.457, 6.467, 6.487, 6.497, 6.511, 6.517, 6.517, 6.523, 6.532, 6.547, 6.583, 6.587, 6.587, 6.587, 6.607, 6.611, 6.647,

6.647, 6.647, 6.647, 6.647, 6.657, 6.657, 6.671, 6.671, 6.677, 6.677, 6.677, 6.697, 6.704, 6.717, 6.717, 6.737, 6.737,

g1

max
1≤i≤n

|pi − 0.5| = n√1 − α/2 → pextreme(α) = 0.5 ± n√1 − α/2

xextreme(α) = InvCDF(0.5 ± n√1 − α/2; (πj)1≤j≤m); "PDF")
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PDFGL(x;μ,σ,κ) = c1σ
−1e−|c0z|κ , c0 = ( Γ(3/κ)

Γ(1/κ) )
1/2

, c1 = κc0

2Γ(1/κ) , z = x−μ

σ

PDFG(x;μ,σ) = σ−1(2π)−1/2e
− (x−μ)2

σ2



6.737, 6.747, 6.767, 6.767, 6.767, 6.797, 6.827, 6.857, 6.867, 6.897, 6.897, 6.937, 6.937, 6.957, 6.961, 6.997, 7.027,

7.027, 7.027, 7.057, 7.071, 7.087, 7.087, 7.117, 7.117, 7.117, 7.121, 7.123, 7.147, 7.151, 7.177, 7.177, 7.187, 7.187,

7.207, 7.207, 7.207, 7.211, 7.247, 7.247, 7.277, 7.277, 7.277, 7.281, 7.304, 7.307, 7.307, 7.321, 7.337, 7.367, 7.391,

7.427, 7.441, 7.467, 7.516, 7.527, 7.527, 7.557, 7.567, 7.592, 7.627, 7.627, 7.657, 7.657, 7.717, 7.747, 7.751, 7.933,

8.007, 8.164, 8.423, 8.683, 9.143, 9.603}. The sample size is n = 206.

The MLE estimates for the populations parameters are:

For Gauss-Laplace distribution (eq.10): μ = 6.47938, σ = 0.82828, k = 1.79106;

For Gauss distribution (eq.11): μ = 6.48057; σ = 0.82874.

The greatest departure from the median (0.5) is for 9.603 in both cases:

CDF (9.603; μ = 6.47938, σ = 0.82828, k = 1.79106) = 0.999804;

CDF (9.603; μ = 6.48057, σ = 0.82874) = 0.999918.

For the sample size (n = 206) at α = 5% risk being in error the g1 statistic detect an outlier if is departed at more than  

 = {0.000124483, 0.9998755} (see eq.8) and then the confidence interval for the extreme values at 5%

risk being in error for the sample having n = 206 values is [0.000124483, 0.9998755]. With the above given results at 5%

risk being in error 9.603 is an outlier for Gauss (normal) distribution (0.99918 > 0.9998755) and it is not an outlier for

generalized Gauss-Laplace distribution (0.000124483 < 0.999804 < 0.999875).

7. Conclusion

Extreme values statistic g1 provides a simple method for detecting outliers. The method is applicable for any continuous

distribution at any risk being in error.
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