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Interstitial light elements play an important role in magnetic materials. Especially, Mn-based compounds with

interstitial atoms are important for the easy fabrication of highly functional magnetic devices.
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1. Introduction

Some crystal structures possess interstitial crystallographic sites, which light elements such as hydrogen, boron,

carbon, nitrogen, and oxygen atoms can occupy. There is a rather long history of metallurgical, physical, and

chemical research studies on interstitial atoms . In past years, domain control of ferromagnets has been

studied . Since the 1980s, interstitial atoms have attracted intense attention related to the improvement of

magnetic properties of rare-earth Fe and Co-based permanent magnets .

Interstitial atoms have two major roles—influencing the stability of the crystal structure and in the modification or

change in magnetic properties. In the former case, small amounts of interstitial light elements are required to

stabilize the desired crystal structure; compounds without interstitial atoms would not exist in thermal equilibrium. In

the latter case, interstitial atoms affect the crystal structure parameters, such as the interatomic distances between

magnetic atoms or the orbital hybridization between magnetic and interstitial atoms, consequently meaning the

magnetic ordering temperature, the magnetic moment, the magnetic structure, and other factors can be altered.

The most well-studied platforms for interstitial atoms are rare-earth Fe-based permanent magnets. The

improvements of the magnetic properties have mainly been achieved through the addition of light elements such as

boron, carbon, and nitrogen atoms. The Bethe–Slater curve is one of the criteria needed to understand whether

metal 3d transition elements of Cr, Mn, Fe, Co, and Ni possess ferromagnetic (FM) or antiferromagnetic (AFM)

states (see Figure 1) . This curve exhibits the exchange coupling as a function of the interatomic distance.

Fe falls in the FM region near to the border between FM and AFM states. Therefore, in Fe-based compounds, a

shorter Fe–Fe distance (shrinkage of the unit cell volume) favors an AFM state, while a longer Fe–Fe distance (an

expansion of the unit cell volume) favors the FM state . With increasing Fe–Fe distance, smaller
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overlapping of 3d wave functions makes the 3d band narrower, which leads to the FM state, and in most cases the

Curie temperature T  is enhanced.

Figure 1. Schematic view of the Bethe–Slater curve. Here, J, d, and R  represent the magnetic exchange coupling

between atoms, the interatomic distance, and the radius of the 3d shell, respectively.

On the other hand, the effects of interstitial atoms in Mn-based compounds are not well researched. As shown in

Figure 1, the Mn atom itself shows the AFM ground state, however the expanded Mn–Mn distance in Mn-based

compounds leads to the FM state. Mn compounds are indispensable for both FM and AFM materials. For example,

MnBi and MnAl have attracted much attention as permanent magnets . MnSi has been extensively

studied as a magnetic material with a skyrmion state, which is a noncollinear magnetic structure. The skyrmion

domains can be driven by the low current density threshold . Recently, Mn Sn has been intensively studied as a

topological antiferromagnet   and is a candidate next-generation spintronics material. If the effects of interstitial

atoms are well understood, they can be highly useful in the development of spintronics devices or highly functional

magnetic devices, which can be developed via easy on-demand control of the magnetic state.

2. Mn-Based Compounds

We have surveyed Hydrogen-Absorbed (R or Th) Mn  Hydrogen-Absorbed YMn Carbon-Added Mn Si (R or

Actinide)Mn Si  and its germanides,   Boron-Added Pd Mn  Alloy, and Boron-Added Sm Mn Al As in the

rare-earth Fe-based compounds, the interstitial atoms give rise to the enhancement of FM interaction in the weak

hybridization regime leading to the appearance of room temperature ferromagnetism. However, the Mn compounds

surveyed above manifest the change or additional formation of magnetism by the interstitial atoms, while many
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rare-earth Fe-based parent compounds are already ferromagnets. The change from paramagnetic to FM state is

observed in hydrogen-absorbed Th Mn , hydrogen-absorbed YMn  or Sm Mn Al B . The result of Mn Si C  thin

film may be a rare example of change from the AFM to FM state by the interstitial atoms. In Pd Mn B , the

room temperature ferromagnetism is induced by a slight addition of boron, while the low-temperature magnetic

ground state of the parent compound is unchanged. This can be regarded as an example of the additional

formation of magnetism by interstitial atoms. It should be noted that, in some cases, the change or additional

formation of a magnetic state seems to abruptly occur, which is valuable for future research. We note here that the

magnetic structures have been divided into FM and AFM, although some compounds may show a more

complicated state such as canted AFM, and spiral AFM. In the future, discussion taking into account a more

microscopic mechanism of the magnetic ordering would be necessary.

3. Perspectives

3.1. Application of Mn-Based Magnetic Materials

The change in magnetism between FM and AFM states or the additional formation of new magnetic coupling at

rather high temperatures by interstitial atoms is substantially valuable in a magnetic device integrated with both FM

and AFM materials due to the easy on-demand control of magnetism in the fabrication process. At the present

stage, Mn-based compounds fulfill the requirement of change or the additional formation of magnetism, while in Fe-

based compounds, only improvements of FM properties are extensively investigated and the change (or the

additional formation) of the magnetic state is not well explored. Focusing on the research area of the permanent

magnet, a rare-earth Mn-based permanent magnet is still missing, although the MnBi-type magnets are well

known. Based on the Bethe–Slater curve, Mn atoms favor the FM state with expanding Mn–Mn distance.

Therefore, the density of Mn could not be so increased as in rare-earth Fe-based permanent magnets, resulting in

a smaller saturation magnetization. However, there exists a large gap of BH energy product between the NdFeB

magnets and ferrite magnets, and a rare-earth Mn-based permanent magnet may be a good candidate filling the

gap .

3.2. Towards Further on-Demand Control of Magnetism

Further improvement of magnetic properties in the on-demand control would be achieved by another strategy such

as a composition effect and carrier doping. If a metallurgical phase diagram of a target compound possesses a

homogeneity range, the magnetic ordering temperature often varies with the atomic composition. For example, the

T  of Tb Co Ga ranges rather widely from 75 to 145 K by changing the starting composition . Such a

composition effect is reported in other compounds   such as Nd Pd Ge , Tb Co Ga and Mn Ga. In

many cases, the crystal structure parameters slightly change, which heavily affects the magnetic exchange

interactions.

The magnetic anisotropy energy is one of the important factors in characterizing a ferromagnet. It is known that it

can be tuned by doping, mainly due to the variation of the density of states near the Fermi level. The doping effect
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is reported in, for example, Ni MnGa, SmCo Fe, MnBi, Nd Fe X (X = C or N), Ce AuP  and so on 

. Taking into account the crystal symmetry, which is related to the magnetic anisotropy energy, a lower crystal

symmetry with more tunable crystal parameters might be favorable.

3.3. Comments on Control of Magnetism by External Field

Another interesting control of magnetism is the manipulation of spin by external fields such as the electric field and

the optical light. For example, the employment of an electric double-layer transistor has achieved a control of

magnetism by weak voltage . Recently, an optical change in magnetism through the Kondo effect has been

reported . The interstitial atoms may precisely control the magnetism so that only a small magnitude of external

field is required for the device working, and the power consumption can be highly reduced.

3.4. Comments on Critical Behavior

From the fundamental viewpoint, research into critical behavior is interesting. Actually, in strongly correlated

electron systems, there have been plenty of studies for seeking a quantum critical point under the suppression of

magnetism . We speculate that a formation of FM exchange coupling above room temperature would

be a discontinuous phenomenon as mentioned in the results of Mn-based compounds. While it is not well

investigated for rare-earth Fe-based compounds, we note that RFe TiC  and RFe TiC  show a finite change in

T  at an infinitely zero value of volume expansion depending on R species .
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