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Carbon capture and storage (CCS) is considered to be a promising technology in reducing atmospheric CO2

concentration. Among the CO2 capture technologies, adsorption has grabbed significant attention owing to its

advantageous characteristics discovered in recent years. Solid adsorbents have emerged as one of the most

versatile CO2 adsorbents. 

porous carbon  amine functionalization  physisorption  chemisorption  CO2 capture

activated carbon  Greenhouse effect

1. Introduction

1.1. Physical and Chemical Properties of CO

Carbon dioxide (CO ) is a triatomic gas under ambient conditions , which is abundant, non-toxic, recyclable, and

economical . Moreover, CO  sublimates from solid-state to gas at −78 °C under atmospheric pressure and is

comparatively inert. As a commonly known fact, CO  gas that naturally occurs in the Earth’s atmosphere is of

paramount importance to photosynthesis . From an economic point of view, CO  can be converted into high-

value chemical products such as urea, carbonates, and acrylates  through catalytic conversion, mineralization,

photochemical, or electrochemical reactions, and supercritical CO  can be also utilized in various industrial fields,

including food beverages, refrigerants, transportation fuels, fire extinguishers, polymer synthesis, medical, and

exploitation of heavy oil. Solid-state CO  can be used in artificial rainfall and concrete production .

1.2. Trend of Atmospheric CO  Concentration and Potential CO  Emissions
Sources

Although the natural carbon cycle controls the CO  concentration level in the Earth’s atmosphere , due to both

anthropogenic activities and natural emissions, the current atmospheric CO  concentration reached around 416.5

ppm in mid-2020 , which is ~40% greater than the beginning of the industrial revolution (280 ppm) in 1750 ,

with an average growth rate of 2 ppm per year . In other words, the global emission of CO  was estimated to

be more than 36 MT in 2017, which is 18-fold greater than compared to the 1800s . Although it is a consensus

that the amount of atmospheric CO  should not exceed 350 ppm , according to the predictions by the

International Panel on Climate Change (IPCC), it is expected to reach up to 570 ppm by 2100 . It is

identified that the main causes for the tremendous increase in such atmospheric CO  concentration are mainly

associated with various anthropogenic activities, including vehicular emissions, fossil-fuel power plants,
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deforestation, chemical processes , and waste treatment , which have been growing steadily due to rapid

industrialization and urban development . The natural emission sources, including soil degradation processes

and volcanic activities, are also responsible for supplying atmospheric CO  to some extent .

1.3. Significant Outcomes Owing to the Trend of Increasing CO  Emissions

Unfortunately, the non-controllable anthropogenic activities have negatively affected human beings  and the

entire ecosystem  by releasing greenhouse gases, including CO , into the atmosphere. Among the greenhouse

gases, CO  is considered as one of the primary sources, contributing to roughly 64% of the total greenhouse effect

. The progressive increase in atmospheric CO  concentration is responsible for climate change, which might

adversely impact the global environmental processes, such as the long-term rise in global temperatures, changes

in rainfall patterns, rising sea levels , ocean acidification , species extinction, melting of polar ice ,

shrinkage of snow covers , and severe weather events, ranging from flash floods , hurricanes, freezing

winters, severe droughts , heat waves , urban smog , and cold streaks . According to the predictions

made by IPCC, the rise in sea level of 3.8 m  and rise in mean global temperature by 3.7 °C  are

expected by 2100 . Besides, the increasing trend of CO  in the air might cause various air-borne diseases,

which will increase the risk of health complications . The economic loss due to climate change is expected to be

5–20% of the global domestic production . Therefore, extensive research projects are currently underway to

reduce and control CO  emissions from power plants, industries, and transportation .

1.4. Approaches to Reduce Atmospheric CO  Concentration

Three feasible strategies to reduce CO  emissions are exhibited by the modified Kaya identity as expressed in

equation (1) . They are namely, (i) improving the energy efficiency of coal-fired plants , (ii) change of the

fossil fuels to renewable and carbon-free energy resources , and (iii) utilization of carbon capture and storage

(CCS) technologies .

where CD: CO  emissions, P: Population, GDP: economic development in gross domestic production, E: energy

production, C: carbon-based fuels used for energy production, and S : CO  sinks .

Apart from the above-mentioned three strategies, enhancing partial pressure in exhaust gas , geoengineering

approaches including afforestation and reforestation , flue gas separation, and carbon mineralization  can

also be considered. Among the different CO  mitigation options, IPCC has suggested CCS as a promising

technology for achieving a 19% reduction of global CO  emissions by 2050 . CCS can reduce CO  emissions

(typically 85–90%) from significant stationary point sources such as power plants, cement kilns, and NG wells 

. Nevertheless, CCS is considered a mid-term solution in reducing global warming, climate change, and

simultaneously allowing humans to continue using fossil fuels until a renewable and clean energy source is

discovered to replace them . CCS is comprised of three significant steps, namely, (i) capture of emitted CO
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from power plants and industrial processing without releasing them into the atmosphere, (ii) transportation of the

captured and compressed CO , and (iii) underground storage of the captured CO  . However, the process

of CO  capture, which accounts for 70–80% of the total cost, has proven to be the major barrier for the deployment

of CCS . Interestingly, in recent years, carbon capture storage and utilization (CCSU) has grabbed significant

attention compared to CCS owing to the convertibility of the captured CO  into commercial products . The

success of CCS and CCSU technologies are associated with the CO  adsorption efficiency, ease of handling,

manufacturing cost, and renderability of the associated materials .

1.5. C  Emission Sources

The CO  emission sources are the primary candidates for potential applications of CCS or CCSU technologies.

Therefore, from a community and industrial point of view, CO  capture from typical gas streams, including flue gas,

biogas, flare gas, syngas, and ambient air, has grabbed significant interest . Table 1 depicts the summary of the

compositions of different gas streams.

Table 1. Compositions of different gas streams which act as potential CO  capture opportunities (Reprinted with

permission from ref. ).
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1.6. CO Capture Technologies

Table 2 depicts the comparison of the leading carbon capture technologies. According to Table 2, carbon capture

from power plants in industries can be classified as (i) pre-combustion capture, (ii) oxy-fuel combustion, and (iii)

post-combustion capture  depending on the combustion method and composition of the gas stream . The

working conditions such as pressure and temperature differ for each technique . The main factors impacting

CO  capture efficiency are the gas composition, gas stream temperature, and energy penalty associated with

regeneration .

Table 2. Comparison of the three main carbon capture technologies.
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2. Solid Adsorbents for CO  Capture

2.1. Adsorption Process of CO

Adsorption is a surface phenomenon that highly depends on surface properties and functionalities . Adsorption

of CO  onto a material occurs through different types of interactions between the gas molecules and the adsorbent.

Adsorption can be classified as (i) physisorption or (ii) chemisorption . CO  adsorption is an exothermic process

as reported elsewhere . Figure 1 presents the schematic of the two adsorption processes, while Table 3

tabulates the differences between physisorption and chemisorption.
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Figure 1. Schematic of the interactions between gas molecules and the adsorbent surface during physisorption

and chemisorption (Reprinted with permission from ref. ).

Table 3. Comparison of the CO  physisorption and chemisorption processes.
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2.2. Different Regeneration Strategies

The attached CO  molecules onto the adsorbent surface could be regenerated through the (i) pressure swing

adsorption (PSA), (ii) temperature swing adsorption (TSA), (iii) vacuum swing adsorption (VSA), (iv) pressure and

vacuum swing adsorption (PVSA), and (v) electric swing adsorption (ESA) processes . Table 5 shows the

advantages and disadvantages of different regeneration strategies. The regeneration method depends on the

chemical and structural properties of a given adsorbent .

Table 4. Comparison of different regeneration strategies.
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2.3. Criteria for Selecting CO  Adsorbents

When synthesizing and selecting an effective CO  adsorbent, the material should be economical and operational

simultaneously . Therefore, a prospective CO  adsorbent should satisfy the following criteria (Table 5): (i) CO

adsorption capacity: The adsorption capacity plays a vital role since it determines the amount of adsorbent to be

inserted into the adsorption column to attain the desired performance , (ii) Regenerability: The adsorbent

should be fully regenerable and require relatively mild conditions for complete regeneration , (iii) CO  selectivity:

The adsorbent should display substantially high selectivity for CO  in the co-presence of other species (e.g., N2,

methane (CH4), sulfur dioxide (SO ), hydrogen sulfide (H2S), and moisture) , (iv) Adsorption/desorption

kinetics: A rapid adsorption/desorption is required for swing adsorption to decrease the cycle time , (v)

Thermal, chemical, and mechanical stability: During the cyclic regeneration process, the microstructure and

morphology of the adsorbent should be retained. Moreover, the adsorbent should withstand harsh operating

conditions, including vibration, high temperatures, pressures, and flow rates. Additionally, the amine-functionalized

adsorbents should be resistant against oxidizing agents and contaminants such as sulfur oxides (SOX), nitrogen

oxides (NOX), water vapor, and heavy metals , and (vi) Adsorbent cost: The adsorbent should be synthesized

using cheap raw materials while adopting a cost-effective and energy-saving synthesis routes .

Table 5. Threshold values of criteria for selecting an effective CO  adsorbent (Reprinted with permission from refs.

).
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62. Patel, H.A.; Byun, J.; Yavez, C.T. Carbon dioxide capture adsorbents: Chemistry and Methods.
ChemSusChem 2017, 10, 1303–1317.

63. Kamran, U.; Park, S. Chemically modified carbonaceous adsorbents for enhanced CO2 capture:
A review. J. Clean. Prod. 2021, 290, 125776.

Regeneration
Strategy Advantages Disadvantages

Applicability over a wide range of

temperatures and pressures 

Electric swing
adsorption (ESA)

More economical than TSA and

PSA 

Independent purge gas flow 

Fast heating and cooling rates 

Low energy consumption 

Further improvements are required

before commercialization 

The adsorbents should have good

electrical conductivity 

Vacuum swing
adsorption (VSA)

Applicability in large point sources
Energy intensive operation
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Parameter Requirement

CO2 adsorption capacity 3–4 mmol/g
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2.4. Different Adsorbents for CO  Capture

Numerous studies on CO  capture conducted in academic and industrial settings have developed promising

adsorbents possessing the requirements demonstrated in Table 5 . A variety of adsorbents have been

discovered and synthesized, including MOFs, zeolites, activated carbons, zeolite imidazolate frameworks (ZIFs),

grafted and impregnated polyamines , activated alumina, carbonized porous aromatic frameworks (PAFs),

covalent organic frameworks (COFs) , porous organic polymers (POPs) , mesoporous silica, carbon

nanotubes , metal oxides, ionic liquids , phosphates , and molecular sieves .

2.5. Importance of Carbon-Based Adsorbents for Effective CO  Capture

Of the previously mentioned CO  adsorbents, though zeolites and well-ordered frameworks exhibit high CO

adsorption capacities at relatively lower pressures , the CO  adsorption performance gradually decreases in the

co-presence of moisture . Similarly, molecular sieves and silica gel also demonstrate decreased CO

adsorption performance in the co-presence of moisture . Additionally, the usage of MOFs has been severely

limited due to structural collapse upon vacuum treatments , contact with acid gases, thermal regeneration ,

and their complex and expensive synthesis procedures . The ionic liquids are also unfavorable for practical

applications due to their relatively high operational costs and high viscosity, leading to corrosion-related problems

.

On the other hand, the application of carbon materials in the day-to-day lives of human beings can be traced back

to more than 5000 years when the early humans discovered charcoal formed through the incomplete combustion

of wood. Interestingly, many carbon materials have been discovered, such as graphene, fullerene, activated

carbons, graphite, carbon foams, biochar carbon nanotubes, and carbon aerogels . The carbon-based materials

can be used as appropriate candidates in catalysis, electronics, fuel cells, biology, metal recovery, and gas storage

and separation .

Among the aforementioned wide range of applications, carbon-based porous materials can serve as appropriate

candidates for CO  capture due to their advantageous, including low production cost , competitive CO

adsorption performance at a given pressure , easy synthesis, ease of scaling up , wide availability,

controllable pore structure, high thermal stability , good chemical resistance against alkaline and acidic media

, fast adsorption kinetics , lower regeneration energy requirements , high apparent density (0.3 g/cm ) 

, high surface area , environmental benignity , favorable surface chemistry , selectivity , and
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Regenerability >1000 cycles

CO2 gas selectivity over other gases >100

Adsorption/desorption kinetics >1 mmol/g.min

Adsorbent cost $5–15/kg sorbent
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