

Solid Adsorbents for CO₂ Capture

Subjects: [Nanoscience & Nanotechnology](#) | [Environmental Sciences](#) | [Engineering, Environmental](#)

Contributor: Chamila Gunathilake, Kumar Vikrant

Carbon capture and storage (CCS) is considered to be a promising technology in reducing atmospheric CO₂ concentration. Among the CO₂ capture technologies, adsorption has grabbed significant attention owing to its advantageous characteristics discovered in recent years. Solid adsorbents have emerged as one of the most versatile CO₂ adsorbents.

porous carbon

amine functionalization

physisorption

chemisorption

CO₂ capture

activated carbon

Greenhouse effect

1. Introduction

1.1. Physical and Chemical Properties of CO₂

Carbon dioxide (CO₂) is a triatomic gas under ambient conditions [\[1\]](#), which is abundant, non-toxic, recyclable, and economical [\[2\]](#). Moreover, CO₂ sublimates from solid-state to gas at -78°C under atmospheric pressure and is comparatively inert. As a commonly known fact, CO₂ gas that naturally occurs in the Earth's atmosphere is of paramount importance to photosynthesis [\[1\]](#). From an economic point of view, CO₂ can be converted into high-value chemical products such as urea, carbonates, and acrylates [\[2\]](#) through catalytic conversion, mineralization, photochemical, or electrochemical reactions, and supercritical CO₂ can be also utilized in various industrial fields, including food beverages, refrigerants, transportation fuels, fire extinguishers, polymer synthesis, medical, and exploitation of heavy oil. Solid-state CO₂ can be used in artificial rainfall and concrete production [\[4\]](#)[\[5\]](#).

1.2. Trend of Atmospheric CO₂ Concentration and Potential CO₂ Emissions Sources

Although the natural carbon cycle controls the CO₂ concentration level in the Earth's atmosphere [\[1\]](#), due to both anthropogenic activities and natural emissions, the current atmospheric CO₂ concentration reached around 416.5 ppm in mid-2020 [\[6\]](#), which is $\sim 40\%$ greater than the beginning of the industrial revolution (280 ppm) in 1750 [\[7\]](#)[\[8\]](#)[\[9\]](#), with an average growth rate of 2 ppm per year [\[9\]](#)[\[10\]](#). In other words, the global emission of CO₂ was estimated to be more than 36 MT in 2017, which is 18-fold greater than compared to the 1800s [\[11\]](#). Although it is a consensus that the amount of atmospheric CO₂ should not exceed 350 ppm [\[12\]](#), according to the predictions by the International Panel on Climate Change (IPCC), it is expected to reach up to 570 ppm by 2100 [\[12\]](#)[\[13\]](#)[\[14\]](#). It is identified that the main causes for the tremendous increase in such atmospheric CO₂ concentration are mainly associated with various anthropogenic activities, including vehicular emissions, fossil-fuel power plants,

deforestation, chemical processes [15], and waste treatment [16], which have been growing steadily due to rapid industrialization and urban development [15][17]. The natural emission sources, including soil degradation processes and volcanic activities, are also responsible for supplying atmospheric CO₂ to some extent [18].

1.3. Significant Outcomes Owing to the Trend of Increasing CO₂ Emissions

Unfortunately, the non-controllable anthropogenic activities have negatively affected human beings [19] and the entire ecosystem [3][6] by releasing greenhouse gases, including CO₂, into the atmosphere. Among the greenhouse gases, CO₂ is considered as one of the primary sources, contributing to roughly 64% of the total greenhouse effect [14][20]. The progressive increase in atmospheric CO₂ concentration is responsible for climate change, which might adversely impact the global environmental processes, such as the long-term rise in global temperatures, changes in rainfall patterns, rising sea levels [21][22], ocean acidification [23], species extinction, melting of polar ice [9], shrinkage of snow covers [24], and severe weather events, ranging from flash floods [25], hurricanes, freezing winters, severe droughts [22], heat waves [26], urban smog [17], and cold streaks [27]. According to the predictions made by IPCC, the rise in sea level of 3.8 m [14][28] and rise in mean global temperature by 3.7 °C [29][30] are expected by 2100 [24]. Besides, the increasing trend of CO₂ in the air might cause various air-borne diseases, which will increase the risk of health complications [31]. The economic loss due to climate change is expected to be 5–20% of the global domestic production [12][28]. Therefore, extensive research projects are currently underway to reduce and control CO₂ emissions from power plants, industries, and transportation [32].

1.4. Approaches to Reduce Atmospheric CO₂ Concentration

Three feasible strategies to reduce CO₂ emissions are exhibited by the modified Kaya identity as expressed in equation (1) [28]. They are namely, (i) improving the energy efficiency of coal-fired plants [33][34], (ii) change of the fossil fuels to renewable and carbon-free energy resources [35], and (iii) utilization of carbon capture and storage (CCS) technologies [28][36][37].

$$CD = P \frac{GDP}{P} \frac{E}{GDP} \frac{C}{E} - S_{CO_2}$$

where CD: CO₂ emissions, P: Population, GDP: economic development in gross domestic production, E: energy production, C: carbon-based fuels used for energy production, and S_{CO₂}: CO₂ sinks [28].

Apart from the above-mentioned three strategies, enhancing partial pressure in exhaust gas [36], geoengineering approaches including afforestation and reforestation [38], flue gas separation, and carbon mineralization [39] can also be considered. Among the different CO₂ mitigation options, IPCC has suggested CCS as a promising technology for achieving a 19% reduction of global CO₂ emissions by 2050 [34]. CCS can reduce CO₂ emissions (typically 85–90%) from significant stationary point sources such as power plants, cement kilns, and NG wells [40][41]. Nevertheless, CCS is considered a mid-term solution in reducing global warming, climate change, and simultaneously allowing humans to continue using fossil fuels until a renewable and clean energy source is discovered to replace them [34]. CCS is comprised of three significant steps, namely, (i) capture of emitted CO₂

from power plants and industrial processing without releasing them into the atmosphere, (ii) transportation of the captured and compressed CO₂, and (iii) underground storage of the captured CO₂ [26][42][43]. However, the process of CO₂ capture, which accounts for 70–80% of the total cost, has proven to be the major barrier for the deployment of CCS [40][44]. Interestingly, in recent years, carbon capture storage and utilization (CCSU) has grabbed significant attention compared to CCS owing to the convertibility of the captured CO₂ into commercial products [45][46]. The success of CCS and CCSU technologies are associated with the CO₂ adsorption efficiency, ease of handling, manufacturing cost, and renderability of the associated materials [22].

1.5. CO₂ Emission Sources

The CO₂ emission sources are the primary candidates for potential applications of CCS or CCSU technologies. Therefore, from a community and industrial point of view, CO₂ capture from typical gas streams, including flue gas, biogas, flare gas, syngas, and ambient air, has grabbed significant interest [47]. **Table 1** depicts the summary of the compositions of different gas streams.

Table 1. Compositions of different gas streams which act as potential CO₂ capture opportunities (Reprinted with permission from ref. [47][48]).

Component	Cement Rotary Kiln	Dry Atmospheric Air	Biogas Generated from Waste Water Treatment Plant Sludge	Natural Gas Fired Flue Gas	Coal-Fired Flue Gas
N ₂	59 vol %	70 vol %	0–1 vol %	73–80 vol %	70–80 vol %
CO ₂	19 vol %	410 ppm	19–33 vol %	3–8 vol %	11–15 vol %
H ₂ O	13 vol %	-	-	7–14.6 vol %	5–12 vol %
O ₂	7 vol %	21 vol %	<0.5 vol %	4.5–15 vol %	3–6 vol %
SO ₂	5–1200 ppm	-	-	<10 ppm	200–4000 ppm
SO ₃	-	-	-	-	0–20 ppm
NO _x	100–1500 ppm	-	-	50–70 ppm	200–800 ppm
CO	-	-	-	-	50–100 ppm
H ₂	-	0.5 vol %	-	5–300 ppm	5–20 g/m ³
Particulate	-	-	-	-	-

Component	Cement Rotary Kiln	Dry Atmospheric Air	Biogas Generated from Waste Water Treatment Plant Sludge	Natural Gas Fired Flue Gas	Coal-Fired Flue Gas
matter					
H ₂ S	-	-	100–4000 ppm	-	-
Ar	-	0.9 vol %	-	-	-
Xe	-	0.1 vol %	-	-	-
Ne	-	18 ppm	-	-	-
He	-	5.2 ppm	-	-	-
CH ₄	-	1.6 vol %	60–75 vol %	-	-
Kr	-	1.1 vol %	-	-	-
N ₂ O	-	0.3 vol %	-	-	-

The Netherlands, 2015; pp. 3–17.

2. Salehi, S.; Anbia, M.; Hosseiny, A.H.; Sepehrian, M. Enhancement of CO₂ adsorption of

1.6 CO₂ Capture Technologies

powerplants using multiwalled carbon nanotubes/Cd-nanozeolite composites. *J. Mol. Struct.* 2018, 1173, 792–800.

Table 2 depicts the comparison of the leading carbon capture technologies. According to **Table 2**, carbon capture from power plants in industries can be classified as (i) pre-combustion capture, (ii) oxy-fuel combustion, and (iii) post-combustion capture [49] depending on the combustion method and composition of the gas stream [50]. The working conditions such as pressure and temperature differ for each technique [51]. Reasons and factors impacting CO₂ capture efficiency in the gas separation spheres with high CO₂ capture capacity are associated with regeneration [28].

5. Qin, F.; Guo, Z.; Wang, J.; Ou, S.; Zuo, P.; Shen, W. Nitrogen-doped asphaltene-based porous carbon nanosheet for carbon dioxide capture. *Appl. Surf. Sci.* 2018, 491, 607–615.

CO ₂ Capture Technology	Advantages	Disadvantages
Pre-combustion capture	<ul style="list-style-type: none"> The concentration of CO₂ produced within these processes range from ~15–60% which makes it easy to capture [51] 	<ul style="list-style-type: none"> When applying to new power plants, the technology is not yet commercialized and requires a high capital investment due to major alternatives to be done into boiler and flue gas systems [28] Process of gasification and water gas shift reactions are expensive and quite challenging [51] High energy penalty associated with regeneration of chemical solvents [52]
Oxy-fuel combustion		

CO ₂ Capture Technology	Advantages	Disadvantages
Oxy-fuel combustion	<ul style="list-style-type: none"> Avoids the requirement of chemicals or other means of CO₂ separation from flue gas [52] 	<ul style="list-style-type: none"> Large energy penalty requirement for providing pure oxygen [53] Absence of complete preparation methods [54] Pure oxygen is expensive [52] Limited knowledge regarding the technology [53] Environmental impacts associated are higher due to energy intensive air separation process [52]
Post-combustion capture	<ul style="list-style-type: none"> Readily applicable for large-scale in newly built and existing power plants without upgrading and reconstruction [55] Repairing does not discontinue the procedure of the entire power plant and it can be regulated or managed easily [56] Shorter time required for creation [57] 	<ul style="list-style-type: none"> Requirement of huge energy supplies for sorbent regeneration [53] Requires the separation of impurities from captured CO₂ [58] CO₂ in the flue gas is diluted with a concentration ranging from 10–15% which requires high recovery and capital costs and 25–35% additional energy for plant operation [28]

18. Lal, R. Acceleration soil erosion as a source of atmospheric CO₂ soil. *Soil Tillage Res.* 2019, 199, 35–40.

19. Kukulka, W.; Cendrowski, K.; Michalkiewicz, B.; Mkiowska, E. MOF-5 derived carbon as material for CO₂ adsorption. *R. Soc. Chem.* 2019, 9, 18527–18537.

20. Diokhananu, W.; Teerachawamong, P.; Klomkliang, N.; Supasitmouskol, S.; Chaemucheun, S.

Effects of nitrogen and oxygen functional groups and pore width of activated carbon on carbon Adsorption is a surface phenomenon that highly depends on surface properties and functionalities [50]. Adsorption dioxides capture: Temperature dependence. *Chem. Eng. J.* 2020, 389, 124413. of CO₂ onto a material occurs through different types of interactions between the gas molecules and the adsorbent. Adsorption can be classified as (i) physisorption or (ii) chemisorption [51]. CO₂ adsorption is an exothermic process as reported elsewhere [52]. Figure 1 presents the schematic of the two adsorption processes, while Table 3 tabulates the differences between physisorption and chemisorption.

22. Dassanayake, R.S.; Acharya, S.; Abidi, N. Biopolymer-based material from polysaccharides: Properties, processing, characterization and sorption applications. *Adv. Sorpt. Process Appl.*

2018, 1–24.

23. Li, Y.; Xu, R.; Wang, B.; Wei, J.; Wang, L.; Shen, M.; Yang, J. Enhanced N-doped porous carbon derived from KOH-activated waste wool: A promising material for selective adsorption of CO₂/CH₄ and CH₄/N₂. *Nanomaterials* 2019, 9, 266.

24. Omidfar, N.; Mohamadalizadeh, A.; Porous substrate carbon dioxide adsorption by modified carbon nanotubes. *Asia-Pac. J. Chem. Eng.* 2015, 10, 885–892.

25. Idrees, M.; Rangari, V.; Jeelani, S. Sustainable packaging waste-derived activated carbon for carbon dioxide capture. *J. CO₂ Util.* 2018, 26, 380–387.

26. Lee, S.; Park, S. A review on solid adsorbents for carbon dioxide capture. *J. Ind. Eng. Chem.* 2015, 23, 1–11.

Process	Advantages	Disadvantages
Physisorption	<ul style="list-style-type: none"> More appropriate for high pressure applications [63] Adsorbent is easily regenerated, and low energy is required for desorption [10] Relatively stable even past 200 °C [10] Low cost for adsorbent preparation [64] 	<ul style="list-style-type: none"> CO₂ capture capacity decreases with increasing temperature [15][65] Low CO₂ uptake at low pressures [47] Low CO₂ selectivity for combustion flue gas streams [42] Adsorption capacity decreases in the presence of water [62]
Chemisorption	<ul style="list-style-type: none"> High selectivity towards CO₂ due to strong interactions between basic species on the adsorbent surface and the acidic CO₂ molecule [42][66] High adsorption capacity at low CO₂ partial pressures such as in the ambient air [42][67][68] Enhanced adsorption capacity in the presence of water [64][69] Comparatively higher mechanical stability [45] 	<ul style="list-style-type: none"> Slower than the physisorption process [70] Functionalization of porous materials with amine groups decreases the CO₂ capture capacity due to pore blockage [66][71] High energy requirement for regeneration of the adsorbent [72] Low cyclic stability due to amine degradation [66]. Higher cost associated with adsorbent synthesis [64] Chemisorbents can permanently bind to gases such as SO₂ to decrease the capacity of active sites for CO₂ capture [72]

Process	Advantages	Disadvantages
	<ul style="list-style-type: none"> • Grafted amines volatilize and degrade above 120 °C due to instability at higher temperatures [72] • A corrosive environment could be produced during the regeneration of spent adsorbent due to the presence of amine groups [59] 	

39. Nazli, G.; Kermani, A.; Park, S. Role of heteroatoms (nitrogen and sulfur)-doped carbon-starch based porous carbons for selective CO₂ adsorption and separation. *J. CO₂ Util.* 2021, 51, 101671.

2.2. Different Regeneration Strategies

40. Benedetti, V.; Cordioli, E.; Patuzzi, F.; Baratieri, M. CO₂ adsorption study on pure and chemically activated chars derived from commercial biomass gasifiers. *J. CO₂ Util.* 2019, 33, 46–54.

41. Gunathilake, C.; Dassanayake, R.S.; Abidi, N.; Jaroniec, M. Porous activated carbon from waste sugarcane bagasse for CO₂ adsorption. *Chem. Eng. Technol.* 2020, 38, 1227–36. The attached CO₂ molecules onto the adsorbent surface could be regenerated through the (i) pressure swing adsorption (PSA), (ii) temperature swing adsorption (TSA), (iii) vacuum swing adsorption (VSA), (iv) pressure and vacuum swing adsorption (PVSA), and Zhang et al. [73] reported that the regeneration method depends on the chemical and structural properties of a given adsorbent [69].

42. Gunathilake, C.; Dassanayake, R.S.; Abidi, N.; Jaroniec, M. Amidoxime-functionalized microcrystalline cellulose-mesoporous silica composites for carbon dioxide sorption at elevated temperatures. *J. Mater. Chem. A* 2016, 4, 4808–4819.

Table 4. Comparison of different regeneration strategies.

Regeneration Strategy	Advantages	Disadvantages
Temperature swing adsorption (TSA)	<ul style="list-style-type: none"> • Simple in operation [69] • Can use low-grade heat from power plants [74] 	<ul style="list-style-type: none"> • Long heating and cooling time periods [69] • Longer desorption time than PSA [28] • Higher energy requirement than PSA [28] • Rapid adsorbent deactivation due to coking at higher temperatures [28]
Pressure swing adsorption (PSA)	<ul style="list-style-type: none"> • Lower energy requirement than TSA [75] • Easy operation [75] • Low capital investment than TSA and VSA [75] 	<ul style="list-style-type: none"> • Compression of the flue gas streams [69] • Dilute gas streams may result in intense energy consumptions during PSA [72]

exploration of the critical factors for CO₂ adsorption capacity on porous carbon materials at

Regeneration Strategy	Advantages	Disadvantages
5	<ul style="list-style-type: none"> Applicability over a wide range of temperatures and pressures [76] 	Effect of char for
5	<ul style="list-style-type: none"> More economical than TSA and PSA [28] 	1
5	<ul style="list-style-type: none"> Independent purge gas flow [69] Fast heating and cooling rates [69] Low energy consumption [69] 	4. critical –102. elements: A here
5	<ul style="list-style-type: none"> Applicability in large point sources [69] 	ations l.

55. Wang, P.; Guo, Y.; Zhao, C.; Yan, J.; Lu, P. Biomass derived wood ash with amine modification for post-combustion CO₂ capture. *Appl. Energy* 2017, 201, 34–44.

2.3. Criteria for Selecting CO₂ Adsorbents

56. Mukherjee, A.; Okolie, J.A.; Abdelfasouli, A.; Niu, C.; Dalai, A.K. Review of post-combustion carbon dioxide capture technologies using activated carbon. *J. Environ. Sci.* 2019, 83, 46–63. When synthesizing and selecting an effective CO₂ adsorbent, the material should be economical and operational. 57. Nairn, B. [74] Operation of Paper Cycles with integrated CO₂ Capture Using Advances (Table 5): (i) CO₂ adsorbent temperature, (ii) CO₂ adsorbent, (iii) CO₂ adsorbent cost, (iv) CO₂ adsorbent to be ins. University of Science and Technology: Trondheim, Norway, 2015, p. 77. 58. Zhang, Z.; Borhani, T.N.G.; El-Naas, M.H. Carbon Capture. In *Exegetic and Environmental Dimensions*; Academic Press, Elsevier: Amsterdam, The Netherlands, 2017. The adsorbent should display substantially high selectivity for CO₂ in the co-presence of other species (e.g., N₂, methane (CH₄), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), and moisture) [74][79][80]. 59. Nandi, M.; Uyama, H. Exceptional CO₂ adsorbents materials under different conditions. *Chem. Rec.* 2014, 14, 1134–1148. 60. Gadipelli, S.; Patel, A.A.; Guo, Z. An ultrahigh pore volume drives up the amine stability and cyclic CO₂ capacity of a sorbent. *Adv. Mater.* 2015, 27, 4903–4909. 61. Chang, B.; Shi, W.; Yin, H.; Zhang, S.; Yang, B. Poplar catkin-derived self-templated synthesis of oxides (NO_x), water vapor, and heavy metals [1131], and (vi) Adsorbent cost: The adsorbent should be synthesized using cheap raw materials while adopting a cost-effective and energy-saving synthesis routes [62]. 358, 1507–1518.

62. Patel, H.A.; Byun, J.; Yavez, C.T. Carbon dioxide capture adsorbents: Chemistry and Methods. *ChemSusChem* 2017, 10, 1303–1317. [74][77].

Parameter	Requirement
CO ₂ adsorption capacity	3–4 mmol/g

Parameter	Requirement	Modified
Regenerability	>1000 cycles	0.
CO ₂ gas selectivity over other gases	>100	ons for
Adsorption/desorption kinetics	>1 mmol/g.min	
Adsorbent cost	\$5–15/kg sorbent	:O2

capture. Breakthrough adsorption study. *J. Environ. Chem. Eng.* **2010**, *4*, 340–350.

2.4. Different Adsorbents for CO₂ Capture
 preparation of biomass-derived porous carbon with controllable pore sizes towards highly efficient CO₂ capture. *Chem. Eng. J.* **2018**, *360*, 250–259.
 Numerous studies on CO₂ capture conducted in academic and industrial settings have developed promising adsorbents possessing the requirements demonstrated in Table 5 [55]. A variety of adsorbents have been discovered and synthesized, including MOFs, zeolites, activated carbons, zeolite imidazolate frameworks (ZIFs), grafted and impregnated polyamines [44], activated alumina, carbonized porous aromatic frameworks (PAFs), covalent organic frameworks (COFs) [82–83], porous organic polymers (POPs) [85], mesoporous silica, carbon nanotubes [84], metal oxides, ionic liquids [86], phosphates [87], and molecular sieves [88].
 study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO₂ capture. *Appl. Energy* **2016**, *168*, 282–290.

2.5. Importance of Carbon-Based Adsorbents for Effective CO₂ Capture

Shukrullah, S.; Naz, M.Y.; Mohamed, N.M.; Ibrahim, K.A.; Abdel-Salam, N.M.; Ghaffar, A. CVD synthesis, functionalization and CO₂ adsorption attribute of multiwalled carbon nanotubes. *Processes* **2019**, *7*, 634.
 Of the previously mentioned CO₂ adsorbents, though zeolites and well-ordered frameworks exhibit high CO₂ adsorption capacities at relatively lower pressures [39], the CO₂ adsorption performance gradually decreases in the presence of Pt and Pd [34–36].
 A. Z. S. Krisnayanti, Y. K. Study of Amino functionalized mesoporous carbon for CO₂ adsorption properties. *Processes* **2021**, *9*, 156. Additionally, the usage of MOFs has been severely limited due to structural collapse upon vacuum treatments [34], contact with acid gases, thermal regeneration [84], and their complex and expensive synthesis procedures [86]. The ionic liquids are also unfavorable for practical separating CO₂ from flue gas using temperature swing adsorption. *Energy Proc.* **2011**, *4*, 562–567. [87].

Xu, C.; Ruan, C.; Li, Y.; Lindh, J.; Stromne, M. High performance activated carbons synthesized from biomass for CO₂ capture and extremely selective removal of volatile organic compounds. *Adv. Sustain. Syst.* **2017**, *2*, 1700147. charcoals formed through the incomplete combustion of wood. Interestingly, many carbon materials have been discovered, such as graphene, fullerene, activated carbons, graphite, carbon foams, biochar, carbon nanotubes, and carbon aerogels [88]. The carbon-based materials can be used as appropriate candidates in catalysis, electronics, fuel cells, biology, metal recovery, and gas storage and separation [27, 88].

Mehrkarz, F.; Ghaffari, A.A.; Jahanshaki, M. Adsorptive separation of CO₂ and CH₄ by the broom sorghum based activated carbon functionalized by diethanolamine. *Korean J. Chem. Eng.* **2016**, *34*, 413–424. In a wide range of applications, carbon-based porous materials can serve as appropriate candidates for CO₂ capture due to their advantageous, including low production cost [27], competitive CO₂ adsorption performance at a given pressure [39–90], easy synthesis, ease of scaling up [88], wide availability, controllable pore structure, high thermal stability [15], good chemical resistance against alkaline and acidic media [91], fast adsorption kinetics [41], lower regeneration energy requirements [86], high apparent density (0.3 g/cm³) [92], adsorption on amino-functionalized clays. *Microporous Mesoporous Mater.* **2019**, *282*, 38–47; [93], high surface area [26–29], environmental benignity [88], favorable surface chemistry [96], selectivity [66], and

78. Rastogi, R.; Chandra, D.; Zia, A.; Majeed, S.; Majeed, S. *Surface functionalization of Mn²⁺ thin film by modeling and optimization of chemical response of surface techniques for adsorption of carbon dioxide by laminated passive/active adsorption strategies*. *Site: Experiments characterization and regeneration studies*. Int. J. Environ. Anal. Chem. 2021.

79. Sahequi, H.; Galvez, M.E.; Bacatirini, V.; Cheng, Y.; Steinfeld, A.; Zimmermann, T.; Tingant, P. Fast and reversible direct CO₂ capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams. *Environ. Sci. Technol.* 2015, 49, 3167–3174.

80. Gan, G.; Li, X.; Fan, S.; Wang, L.; Qin, M.; Yin, Z.; Chen, G. Carbon aerogels for environmental clean-up. *Eur. J. Inorg. Chem.* 2019, 2019, 3126–3141.

81. Alveraz-Gutierrez, N.; Gil, M.V.; Rubiera, F.; Peviada, C. Kinetics of CO₂ adsorption on cherry stone-based carbons in CO₂/CH₄ separations. *Chem. Eng. J.* 2017, 307, 249–257.

82. Marin, L.; Dragoi, B.; Olaru, N.; Perju, E.; Coroaba, A.; Doraftei, F.; Scavia, G.; Destri, S.; Zappia, S.; Porzro, W. Nanoporous furfuryl-imine-chitosan fibers as a new pathway towards eco-materials for CO₂ adsorption. *Eur. Polym. J.* 2019, 120, 109214.

83. Linga, Z.; Kun, C.; Feng, Z.; Qunfeng, Y. Adsorption of CO₂ and H₂ on nitrogen-doped porous carbon from Ionic Liquid precursor. *Chem. Res. Chin. Univ.* 2015, 1, 130–137.

84. Ma, X.; Li, L.; Wang, S.; Lu, M.; Li, H.; Ma, W.; Keener, T.C. Ammonia-treated porous carbon derived from ZIF-8 for enhanced CO₂ adsorption. *Appl. Surf. Sci.* 2016, 369, 390–397.

85. An, L.; Liu, S.; Wang, L.; Wu, J.; Wu, Z.; Ma, C.; Yu, Q.; Hu, X.C. Novel nitrogen-doped porous carbons derived from graphene for effective CO₂ capture. *Ind. Eng. Chem. Res.* 2019, 58, 3349–3358.

86. Yang, M.; Guo, L.; Hu, G.; Hu, X.; Chen, J.; Shen, S.; Dai, W.; Fan, M. Adsorption of CO₂ by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoniation with KOH activation. *Am. Chem. Soc.* 2016, 55, 757–765.

87. Shahrom, M.S.R.; Nordin, A.R.; Wilfred, C.D. The improvement of activated carbon as CO₂ adsorbent with supported amine functionalized ionic liquids. *J. Environ. Chem. Eng.* 2019, 7, 103319.

88. Zhao, H.; Luo, X.; Zhang, H.; Sun, N.; Wei, W.; Suo, Y. Carbon-based adsorbents for post-combustion capture: A review. *Greenh. Gases Sci. Technol.* 2018, 8, 11–36.

89. Jayaramulu, K.; Datta, K.K.R.; Shiva, K.; Bhattacharyya, A.J.; Eswaramoortry, M.; Maji, T.K. Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. *Microporous Mesoporous Mater.* 2015, 206, 127–135.

90. Singh, G.; Ismail, I.S.; Bilen, C.; Shanbhag, D.; Sathish, C.I.; Ramadass, K.; Vinu, A. A facile synthesis of activated porous carbon spheres from D-glucose using a non-corrosive activating

agent for efficient carbon dioxide capture. *Appl. Energy* 2019, 255, 113831.

91. Psarras, P.; He, J.; Wilcox, J. Effect of water on the CO₂ adsorption capacity of amine-functionalized carbon sorbents. *Ind. Energy Chem. Res.* 2017, 56, 6317–6325.

92. Jalilov, A.S.; Li, Y.; Tian, J.; Tour, J.M. Ultra-high surface area activated porous asphalt for CO₂ capture through competitive adsorption at high pressures. *Adv. Energy Mater.* 2016, 7, 1600693.

93. Bai, B.C.; Kim, E.A.; Lee, C.W.; Lee, Y.; Im, J.S. Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO₂ adsorption. *Appl. Surf. Sci.* 2015, 353, 158–164.

94. Laing, T.; Chen, C.; Li, X.; Zhang, J. Popcorn-derived porous carbon for energy storage and CO₂ capture. *Langmuir* 2016, 32, 8042–8049.

95. Chen, S.; Li, Y.; Mi, L. Porous carbons derived from metal organic framework for gas storage and separation: The size effect. *Inorg. Chem. Commun.* 2020, 118, 107999.

96. Ludwinowicz, J.; Jaroniec, M. Potassium salt-assisted synthesis of highly microporous carbon spheres for CO₂ adsorption. *Carbon* 2015, 82, 297–303.

97. To, J.W.F.; He, J.; Mei, J.; Haghpanah, R.; Chen, Z.; Kurosuwa, T.; Chen, S.; Bae, W.; Pan, L.; Tok, J.B.H.; et al. Hierarchical N-doped carbon as CO₂ adsorbents with high CO₂ selectivity from rationally designed polypyrrole precursor. *J. Am. Chem. Soc.* 2015, 138, 1001–1009.

Retrieved from <https://encyclopedia.pub/entry/history/show/93613>