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The rapid development in wireless technologies is positioning the Internet of Things (IoT) as an essential part of our daily

lives. Localization is one of the most attractive applications related to IoT. In the past few years, localization has been

gaining attention because of its applicability in safety, health monitoring, environment monitoring, and security.
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1. Introduction

The Internet is a necessity for billions of people worldwide who need it to complete their daily tasks . Furthermore, it

provides various entertainment applications such as movies, music, and gaming. One estimate states that more than 58%

of the world’s population has access to the Internet to perform such daily tasks. The popularity and growth of the Internet

exponentially increased (roughly 1170%) from 2000 to 2020 . It is transforming the world into a global village where

people can connect and communicate worldwide using the Internet.

The Internet allows different devices and appliances to connect and communicate, which led to a new domain called the

Internet of Things (IoT) . The IoT architecture consists of three layers: the physical layer, the network layer, and

the application layer, as shown in Figure 1. The physical layer consists of various sensors attached to the subject. These

sensors collect the data/information from the subject. Generally, the nature of data depends on the IoT application

requirements. For example, localization-based applications require monitoring and collection of the locality information of

the subject. Likewise, telehealth applications need to monitor the vitals of patients, and agricultural applications measure

the temperature. The physical layer forwards the data to the network layer.

Figure 1. IoT architecture.

The network layer is the middle layer between the application and sensor layer in IoT architecture. The network layer aims

to transmit the data/information from the sensors to the application layer. The medium of data transmission (wireless or

wired) varies based on the application and requirements. Furthermore, the network layer tries to reduce the network’s

data traffic and overheads using optimization techniques. The application layer is the top layer that controls the services

provided to the applications. This layer offers an interface to the user to control and manage the IoT devices. Furthermore,

it provides services to the application depending on the nature of the application.

IoT is an extension of the Internet that envisions connecting all daily devices to the Internet for communications through

interactions or sensing devices. These sensing devices are connected to form a network, termed a wireless sensor

network (WSN) . The IoT consisting of WSNs is essential for transforming the world into a smart world . According to

the Cisco Annual Internet Report , the number of IoT devices will rise from 6.1 billion to 14.7 billion by the end of 2023.
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Among those 14.7 billion devices, more than 48% of them will assist users in performing daily tasks, such as home

automation, security, and tracking applications. Therefore, they act as building blocks in smart cities, smart homes, smart

transportation, smart healthcare, smart grids, and smart industry .

However, there exist numerous challenges in the development of such IoT applications. For example, health-related

applications require rapid and reliable data transmission. Monitoring applications in smart environments require energy-

efficient and robust protocols . Similarly, there are challenges associated with cost, connectivity, and hardware

limitations . However, localization is one key challenge that needs to be addressed in the majority of smart applications.

It is the process of acquiring an object or user’s location through intelligent devices (sensors) in an indoor or outdoor

environment. It is a critical requirement in most smart applications . An exponential increase in smartphones,

wristwatches, and other intelligent wireless IoT devices is motivating researchers to develop efficient localization

schemes. As a result, we are witnessing a significant rise in localization schemes intended to operate in healthcare,

agriculture, environmental work, and habitat monitoring .

2. Review of Location Aware Schemes in IoT

A comparison of the state-of-the-art studies is given in Table 1. From the table, it is clear that most of the existing surveys

target a particular localization domain, i.e., outdoor or indoor.

Table 1. Comparison between this paper and published surveys.
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The main focuses of already published surveys were accuracy, energy efficiency, target prediction, and security. They lack

some critical KPIs, such as recovery, prediction, security, and localization with smart gadgets, i.e., smartphones. Only

28% of publications covered prediction; 35% covered security and localization with smartphones. Simultaneously, no

published survey covered the target recovery KPI, which is an important indicator that affects the overall performance of

the IoT-based localization scheme.

Furthermore, these surveys lacked detail and generic discussion in terms of protocols and techniques for localization

schemes. Therefore, there is a need for a cross-domain survey that puts forward an in-depth discussion on the IoT-based

localization scheme. A total of 40 papers were selected using the PRISMA approach. The key ideas of the selected

papers are presented in Table 2. In addition to that, the selected studies were analyzed based on publishing details and

target applications.

Table 2. Key ideas of selected papers.

Name Overview

Delaney et al.
This paper presents an energy efficient routing protocol using NHs model for tree structured WSN.

Apart from energy efficiency, the proposed solution has the ability to present good results in a lossy

network environment.

Alaybeyoglu et

al. 

This paper presents an efficient tracking scheme for high speed targets. Additionally, the proposed

scheme helps in reducing the target miss ratio during the whole tracking lifecycle.

Mirsadeghi et al.
This paper presents an energy efficient prediction based target tracking scheme for WSN. The

node closest to the object or with the highest energy is selected as a CH to prolong the network

lifetime.

Patil et al. 
This paper presents an energy efficient WSHAN to improve the efficiency of target tracking target

recovery.

Rouhani et al.
This paper presents a solution to resolve the boundary target tracking issues using static clustering.

The proposed solution is energy efficient, reasonably accurate and reliable in terms of target

tracking.

Wahdan et al. This paper presents a hybrid solution of static networking clustering and dynamic CH. The dynamic

CH uniformly utilize the energy of member SNs to prolong the network lifetime and prediction.

Zhou et al. 

This paper presents a fusion of MMA and PPHD for multi-target tracking in an urban area.

Additionally, K-mean clustering is used to calculate the number of targets at any given time. The

proposed scheme results in the tracking of dynamically changing unknown numbers of targets in

urban areas.

Amudha et al.
This paper presents a multi camera based scheme for target tracking. In this scheme, the camera

near the mobile target is activated while all other cameras remain in a sleep state to conserve

energy. In contrast, all the cameras are activated when a target is lost to improve the tracking.

Bhowmik et al.
This paper presents an algorithm is to improve the overall coverage and target tracking. In addition

to that, the proposed algorithm uses the FSM based RSSI tracking algorithm to make it more

energy efficient.

Jinan et al. 
This paper presents a multi-model framework based on the PUESRF and JPDA. It results in

improving the accuracy and precision of data that makes target tracking consistent.

References
Indoor

Localization
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Localization
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Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Name Overview

Darabkh et al.
This paper presents an adaptive CH algorithm with an aim to achieve a better target tracking by

efficiently electing CH and cluster members. The proposed algorithm is energy efficiency and

improves the network scalability.

Khakpour et al.
This paper presents a fusion of DCTT and PCTT against vehicular tracking in a Vehicular Ad-hoc

Network. To improve the target prediction, The DCTT performs in a distributed manner while PCTT

is used for a centralized prediction algorithm.

Joshi et al. 

This paper presents a static cluster based target tracking for the prediction that is independent of

wireless network architecture (homogenous or heterogeneous). The proposed scheme uses a

linear prediction technique to calculate direction and speed to improve the target prediction.

Xiao et al. 

This paper presents a novel ASMT using Bayesian estimation to efficiently track multiple targets.

The ASMT provides high accuracy, precision based multi-target tracking, less computation and

solves the data association problem in WSN very efficiently by using location state and velocity

state.

Silva et al. 
This paper presents an energy efficient scheme with the ability to detect and highlight the fake

node positioning and bogus data flooding.

Oracevic et al.
This paper presents a SRPTT algorithm to prevent the rouge SN from faking its location or flooding

the bogus packets in a WSN. The SRPTT maintains a balance between security and mobile target

tracking by employing a reputation concept.

Alshamaa et al.
This paper presents a novel zoning based localization technique for indoor target tracking. The

proposed technique develops a belief function by combining fingerprint based target observation

and evidence associated with sensor mobility to improve the accuracy of target tracking.

Chen et al. 

This paper presents an adaptive extended kalman filter to remove and update the noise

covariance. The proposed solution results in improving the accuracy and reliability of target

tracking.

Panag et al. 

This paper presents a DHSCA to uniformly utilize sensors during the tracking. The proposed

algorithm simplifies the set-up phase time of the network resulting in reducing the overhead of the

network.

Zhang et al. 

This paper presents a dynamic clustering-based adaptive filtering scheme for target tracking in a

WSN. The proposed scheme consists of two stages hierarchal data aggregation technique, which

results in accurate and energy efficient target tracking.

Qian et al. 

This paper presents an AUKF algorithm to enhance the robustness and accuracy of the recovery

mechanism. The AUKF fine-tunes the noise covariance matrix to increase the accuracy and

robustness of the recovery mechanism. The vigorous scheduling of static and mobile SNs improves

the tracking probability with less energy consumption.

Zhang et al. 

This paper presents an algorithm based on a hybrid sensor network to estimate the target region

via static sensors. Additionally, a movement algorithm is presented for nodes to select the location.

The proposed solution results in conserving the energy by reducing the target tracking sensors.
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Name Overview

Li et al. 
This paper presents a sensor selection technique based on POMDP to reduce the sensor selection

lagging. It results in improving the target tracking accuracy and reliability.

Darabkh et al.

This paper presents an error and Energy-aware cluster head selection algorithm to improve the

target localization. The proposed algorithm improves energy consumption and simplifies the

selection of cluster members. Additionally, it reduces the packets overhead by minimizing the

transmission of control messages.

Liu et al. 
This paper presents energy efficient scheme with low prediction accuracy. Apart from energy

efficiency, it reduces the target miss rate probability.

Luo et al. 
This paper presents a scheme to improve the target tracking for an indoor environment using a

CLTA.

Yu et al. 
This paper presents a mobile node-based target tracking scheme to enhance the target tracking

accuracy and transmission reliability.

Vallas et al. 

This paper presents a Gaussian filter-based multi-sigma point filter to reduce the curse of

dimensionality in high dimension systems. Furthermore, it improves the efficiency of tracking the

multiple targets in a WSN.

Ghodousi et al.
This paper presents an energy efficient tracking scheme using ARIMA and UKF. The ARIMA, after

observing target in equal interval, predicts its future location while UKF estimates the target

location. The proposed scheme preserves the energy of SNs and improves the network lifetime.

Liang et al. This paper presents a trust-based distributed KF scheme for secure and reliable target tracking.

Khan et al. 
This paper presents a dynamic clustering-based verifiable multi iteration scheme to improve target

tracking. The proposed scheme improves the accuracy and reliability of tracking.

Liu et al. 
This paper presents an object localization scheme to provide better localization results on the

sequences undergoing shape deformation and illumination changes.

Nguyen et al. This paper presents a solution to improve the accuracy of target tracking in harsh radio

environments. The proposed scheme is efficient in both indoor and outdoor environments.

Ullah et al. 
This paper presents an underwater target tracking scheme intending to achieve energy efficiency

and tracking accuracy.

Alberto et al. 

This paper presents a multi-model tracking system by unifying fingerprint-based tracking with

neural networks. The proposed system also employs a Gaussian outliers filter with neural networks

to further improve the tracking accuracy.

Liu et al. 
This paper presents a scheme for tracking multiple targets in a harsh environment accurately and

precisely.
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Name Overview

Liu et al. 

This paper presents an AFS for accurate and efficient target tracking. The proposed scheme is

robust and fault-tolerant with a low target loss rate. Moreover, PSO is used to fine-tune and

improve the overall tracking performance.

Mahmoudreza

et al. 

This paper presents a solution to tackle the multiple target tracking problems with accurate data

association. It results in the prevention of false alarms.

Li et al. 
This paper presents a hybrid solution to provide accurate and reliable localization in harsh

manufacturing workshops.

Reisinger et al. This paper presents an IMM tracking scheme unified with UKF to track the targets efficiently.

2.1. Distribution Based on Publishing Year

We aim to highlight the recent trends in target localization. Therefore, the papers from the last seven years (2014 and

onward) are considered. The yearly distribution of the selected publications is presented in Figure 2. From the figure, it is

depicted that there was less interest in localization in earlier years. However, it started rising from 2017. The last three

years of research (2017–2019) comprised 67% of publications selected for this review. 2020 was just beginning when the

papers were shortlisted. However, based on the trend, more contributions are expected in this domain than in past years.

Figure 2. Distribution based on publication year.

2.2. Distribution Based on Publication Venue

This section aims to highlight the publication venue distribution. Our study includes various publication venues, such as

IEEE, Elsevier, MDPI, and SAGE. The distribution of publications concerning the venues is presented in Figure 3. It was

found that IEEE and Elsevier support most publications in the domain of target tracking—57.5% and 20%, respectively.

Therefore, these two venues are recommended for localization in IoT.
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Figure 3. Distribution based on publishing venue.

2.3. Distribution Based on Publication Type

We have only considered conference proceedings and journal articles for the review. The distribution percentages of

those publication types are presented in the form of a pie chart. From the Figure 4, it is clear that our results are mainly

backed up by journal articles (67%).

Figure 4. Distribution based on publication type.

2.4. Analysis Based on Localization KPIs

There are various localization KPIs, such as energy efficiency, localization accuracy, target prediction, target recovery, and

security. Every paper is trying to address single or multiple KPIs. Table 3 lists the selected publications along with the

target KPIs. The lifetime of sensors is a major concern in WSNs, as battery replacement is a tiring and time-consuming

job. Additionally, low-battery or abandoned sensors can halt the performance of the overall network in emergencies.

Table 3. KPIs Addressed in Selected Papers.

Name Energy Efficiency Localization Accuracy Target Prediction Target Recovery Security

Delaney et al. ✓        

Alaybeyoglu et al. ✓ ✓ ✓    

Mirsadeghi et al. ✓ ✓ ✓    
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Name Energy Efficiency Localization Accuracy Target Prediction Target Recovery Security

Patil et al. ✓ ✓ ✓ ✓  

Rouhani et al. ✓ ✓      

Wahdan et al. ✓ ✓ ✓    

Zhouet al.   ✓ ✓    

Amudha et al. ✓ ✓   ✓  

Bhowmik et al. ✓ ✓      

Jinan et al.   ✓ ✓    

Darabkh et al. ✓ ✓ ✓    

Khakpour et al.   ✓ ✓    

Joshi et al.   ✓ ✓    

Xiao et al.   ✓      

Silva et al. ✓   ✓   ✓

Oracevic et al.   ✓ ✓   ✓

Alshamaa et al.   ✓      

Chen et al.   ✓ ✓    

Panag et al. ✓        

Zhang et al. ✓ ✓      

Qian et al.     ✓ ✓  

Zhang et al. ✓ ✓      

Li et al. ✓   ✓    

Darabkh et al. ✓ ✓      

Liu et al. ✓ ✓ ✓    

Luo et al.   ✓      
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Name Energy Efficiency Localization Accuracy Target Prediction Target Recovery Security

Yu et al.   ✓ ✓    

Vallas et al.   ✓ ✓    

Ghodousi et al. ✓ ✓ ✓    

Liang et al.   ✓     ✓

Khan et al. ✓ ✓     ✓

Liu et al.   ✓ ✓    

Nguyen et al.   ✓      

Ullah et al. ✓ ✓      

Alberto et al.   ✓      

Liu et al.   ✓      

Liu et al.   ✓ ✓ ✓  

Mahmoudreza et al.   ✓     ✓

Li et al.   ✓      

Reisinger et al.   ✓ ✓

Furthermore, accurate predictions and identification of targets are desired in location-aware schemes. Therefore, energy

efficiency, tracking accuracy, and target prediction are the most researched KPIs in target tracking of WSNs, as shown in

Figure 5. In contrast, target recovery and security were explored in only 11% of the papers selected. These are also

important aspects of localization that need the researcher’s attention in the future. In addition to the above analysis, a

general overview of all the papers, including the proposed approach, network structure, number of targets, and

performance parameters, is presented in Table 4.
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Figure 5. Distribution based on target challenges.

Table 4. Overview of selected papers.

Ref. Proposed Approach
Network

Structure

Number of

Targets

Performance

Parameters
Tool

ETX-NH Tree Single PDR: 96% TOSSIM

PF-DLSTA Tree Single N/A NS2

Low Power Target Prediction

Mechanism

Dynamic

Cluster
Single MR: 0.69% N/A

WSHAN
Dynamic

Cluster
Single EE: 37% MATLAB

BCTT Static Cluster Single EE: 48% Omnet++

SCDCH Static Cluster Single N/A MATLAB

PPHD-MMA
Dynamic

Cluster
Multiple N/A N/A

VGTR
Dynamic

Cluster
Single

TMR: 99%

reduction
MATLAB

DCTC with Fuzzy Sensing Tree Single N/A TinyOS and nesC

JPDA, PUESRF
Dynamic

Cluster
Multiple N/A N/A

IPAH
Dynamic

Cluster
Single

EE: 40% improved,

LE: 52% improved
MATLAB

DCTT, PCTT Static Cluster Single N/A NS2 + TOSSIM

Prediction based object tracking

algorithm
Static Cluster Single PA: 99% NS2

ASMT Static Cluster Multiple FR: >14% N/A

GTPM
Dynamic

Cluster
Single N/A NS2

SRPTT Static Cluster Single N/A Java Simulator

Extended observation model,

2  mobility model
Static Cluster Single N/A N/A
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Ref. Proposed Approach
Network

Structure

Number of

Targets

Performance

Parameters
Tool

AEKF Static Cluster Single RMSE: 32.53% N/A

DHSCA Static Cluster Single N/A
Fortran

PowerStation 4.0

ACDF
Dynamic

Cluster
Single N/A N/A

AUKF Static Cluster Single N/A MATLAB

HNTA
Hybrid

Cluster
Multiple N/A N/A

Adaptive sensor selection

algorithm with POMDP

Dynamic

Cluster
Multiple N/A N/A

EEA-IAH
Dynamic

Cluster
Single N/A MATLAB

LPPT Static Cluster Single

Reduce MR:

36.34%,

EE: 5.2 times

Omnet++

CLTA
Dynamic

Cluster
Single LE: 0.65 m MATLAB

FTS Tree Single
LE: >50

improvement
MATLAB

DMGIF
Dynamic

Cluster
Multiple N/A N/A

ARIMA, AUKF
Dynamic

Cluster
Single N/A Opnet + MATLAB

Trust-based distributed Kalman

filtering.

Dynamic

Cluster
Single N/A N/A

Dynamic cooperative multilateral

sensing

Dynamic

Cluster
Single LE: 19% improved MATLAB

ELM compressive sensing
Dynamic

Cluster
Single N/A MATLAB
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Ref. Proposed Approach
Network

Structure

Number of

Targets

Performance

Parameters
Tool

LEMon, LEMon-M Static Cluster Single

Outdoor and Indoor

LE:

10 m and 2 m

improved

N/A

Distance and angle-based

localization

Dynamic

Cluster
Single

LE: 90% improved,

ABL: 104.9 m
N/A

SWiBluX
Dynamic

Cluster
Single LE: 45% improved N/A

TS PM-PHD
Dynamic

Cluster
Multiple N/A N/A

AFS for MC-SSN Tree Single LE: <0.2% N/A

AIE-MCMCDA
Dynamic

Cluster
Multiple LE: 0.39–4.12% N/A

CS-BnB, BnB-AMCL
Dynamic

Cluster
Single

LE: 0.005 m/0.111

deg
4WS4WDr

IMM, UKF Dynamic Multiple EE: 4 times N/A
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