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Systemic mastocytosis (SM) is a rare hematologic disease characterized by an abnormal expansion and

accumulation of pathological mast cells (MCs) in skin and/or other several extracutaneous tissues such as bone

marrow (BM) and the gastro-intestinal tract. Currently, SM is divided into five different diagnostic subtypes

according to the World Health Organization (WHO) 2016 classification. These include indolent SM (ISM),

smouldering SM (SSM), aggressive SM (ASM), SM with associated haematological neoplasms (SM-AHN) and MC

leukaemia (MCL). Additionally, the inclusion of two new subtypes of SM into the classification of the disease is

currently under consideration: a variant of ISM known as BM mastocytosis (BMM), which is characterized by a low

BM MC burden in the absence of skin lesions, and a very rare (<5%) variant of mastocytosis, which shows tumour

mast cells (MCs) with a well-differentiated morphology together with a CD25  CD2  immunophenotype and unique

clinical, biological and molecular features, termed well-differentiated SM (WDSM). From a prognostic point of view,

all these diagnostic subtypes of SM can be grouped into (i) non-advanced forms of SM (Non-AdvSM), which

include BMM, ISM and SSM, typically characterized by a more stable and indolent course of the disease and a life

expectancy similar or close to that of a sex- and age-matched population; and (ii) advanced SM (AdvSM) including

ASM, SM-AHN and MCL, which typically display an adverse prognosis associated with a significantly shortened life

expectancy requiring cytoreductive therapy. Despite this, some ISM patients (<5%) can eventually evolve to SSM

and AdvSM. Conversely, a small proportion of AdvSM patients may also show a relatively stable disease course

over years or even decades.

systemic mastocytosis  prognostic  mutations  KIT  D816V  ASXL1  DNMT3A

1. KIT Mutations in Systemic Mastocytosis

The KIT gene is a proto-oncogene encoding for a trans-membrane receptor (mast/stem cell growth factor receptor

(KIT)) with tyrosine kinase (TK) activity located on the long arm of human chromosome 4 . When the KIT ligand—

stem cell growth factor (SCF)—binds to KIT, conformational changes occur that lead to dimerization of the receptor

and its activation by autophosphorylation . Of note, intracellular signalling triggered upon activation of the KIT

receptor is key to the normal development of haematopoiesis and the survival of haematopoietic stem cells (HSC)

. Except for MCs and some natural killer (NK) cells, KIT is no longer expressed by other mature myeloid and

lymphoid haematopoietic cells . In mast cells (MCs), KIT expression remains at high levels throughout maturation

, playing a critical role in MC proliferation, differentiation and survival . Therefore, the acquisition of

mutations that could impair the normal function of KIT (e.g., activating KIT mutations) has pro-oncogenic effects

associated with inhibition of apoptosis and increased MC proliferation and survival .
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1.1. KIT D816V Mutation

The D816V mutation of KIT is located at exon 17 within the tyrosine kinase (TK) 2 domain of the KIT gene. This

mutation causes constitutive activation of the KIT receptor in the absence of SCF binding and represents the most

frequent genetic alteration in SM (>90% of adult SM patients) . In fact, constitutive activation of KIT causes

preferential differentiation of HSC toward cell lines regulated by KIT expression and signalling (mainly MCs and to

a large extent also other myeloid lineages). The fact that MCs are the only haematopoietic cells that express KIT

throughout their maturation  would explain why this KIT-activating mutation induces the expansion and

accumulation of pathological MCs in different organs and tissues, as typically observed in SM and other KIT-

mutated MC diseases . Of note, the prevalence of the KIT D816V mutation is very similar among adult patients

diagnosed with Non-AdvSM and AdvSM . Therefore, the KIT D816V mutation is considered as a (specific)

diagnostic marker of SM, regardless of the subtype of the disease, its presence being one of the four minor criteria

required by WHO for the diagnosis of SM . However, the presence of this mutation cannot explain by itself

the wide spectrum of disease behaviour observed among SM patients, ranging from stable and even pauci-

symptomatic to progressive and even highly-aggressive disease .

1.2. Other KIT Mutations

Overall, KIT mutations other than KIT D816V can be found in up to 4–5% adults and one third of children with

mastocytosis . In adults, these mutations are mostly located at codons 814–822 within exon 17 

, including several mutant variants at codon 816 . KIT mutations

located outside exon 17 include rare mutations that mostly affect exons 2 , 5 , 7–11 

, 13  and 18 . Of note, most mutations other than KIT D816V correspond to isolated

cases of SM-AHN, MCL or WDSM. Interestingly, MCL patients with KIT mutations other than D816V often lack

additional somatic high-risk mutations . Although the vast majority of KIT mutations defined above are acquired

(somatic) genetic variants, a few mutations typically located in exons 8 to 10 of KIT (e.g., delD419 , S451C ,

K509I  or F522C ) correspond to germinal mutations that frequently show a familial aggregation pattern.

From a clinical point of view, the exact location of the mutations in the KIT gene is of great relevance, since those

mutations that occur within the transmembrane or juxtamembrane domains of the KIT gene (exons 9–11) induce

spontaneous receptor dimerization, making pathological MCs sensitive to conventional TK inhibitor therapies (e.g.,

imatinib) , while KIT mutations involving the catalytic domain (exons 13–18) cause a

conformational change of the protein, which confers intrinsic resistance to imatinib and other TK inhibitors

commonly used to treat other human tumours .

2. Clonal Haematopoiesis in Systemic Mastocytosis

SM is considered a clonal HSC disease characterized by the expansion and accumulation of neoplastic MCs 

. As a neoplasm involving the HSC compartment, the KIT D816V (and other KIT) mutations can be found in both

neoplastic MCs and CD34  BM HSC, as well as in other myeloids (e.g., neutrophils , monocytes 
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, basophils  and/or eosinophils ) and/or lymphoid (e.g., T and B lymphocytes )

cells. In such cases presenting multilineage involvement of haematopoiesis, clonal myeloid (MM) or myeloid plus

lymphoid (MML) cells are found, which derive from the expansion and differentiation of D816V-mutated HSCs to

different myeloid and/or lymphoid cell lineages . Moreover, KIT D816V-mutated BM mesenchymal stem cells

(MSCs) are also frequently detected in MML-mutated cases . Overall, multilineage involvement of

haematopoiesis by the KIT D816V mutation is found in virtually all ASM and SSM patients, in around one third of

ISM cases and in a small proportion (≤10%) of BMM patients . In SM-AHN, the frequency of patients that

show a multilineage KIT D816V mutation may vary significantly  depending on the specific subtypes of SM and

AHN . Thus, KIT D816V-mutated AHN cells have been found in 89% of SM associated with chronic

myelomonocytic leukaemia (SM-CMML), while this would only occur in 20% of SM associated with

myeloproliferative neoplasms (MPN) and 30% of SM associated with acute myeloblastic leukaemia (AML); in turn,

the KIT mutation is almost systematically restricted to the MC compartment in patients with SM associated with

lymphoid neoplasms .

3. Mutations in Genes Other Than KIT

Emergence of the KIT D816V mutation in an HSC during the development of haematopoietic cells would potentially

lead to multilineage involvement of haematopoiesis . This would favour the expansion of neoplastic MCs and an

increasing tumour burden; in addition, it might also lead to an increased genomic instability that may facilitate

acquisition and accumulation of additional genetic alterations and Table S1) in the KIT-mutated or unmutated HSC

and contribute to the malignant transformation of the disease via distinct molecular mechanisms, e.g.,

activation/repression of anti-/pro-apoptotic mechanisms .

In line with this hypothesis, mutations in genes which are also frequently mutated in other myeloid malignancies

are also present at relatively high frequencies in AdvSM patients . In this regard, it has been

recently described that certain DNA methylation patterns may be relevant in the pathogenesis of systemic diseases

associated with MC activation . Moreover, a significant number of somatic mutations has been identified in a

broad number of genes involved in epigenetic regulatory mechanisms, which have been associated, at least in

part, with the pathogenesis, clinical behaviour and evolution of different myeloid neoplasms, including SM .

Thus, around 30–40% of AdvSM present with an associated myeloid haematological neoplasm already at

diagnosis , suggesting a close relationship between both malignancies. In line with this, next generation

sequencing (NGS) studies have confirmed the presence of recurrent mutations in genes involved in post-

transcriptional mRNA processing, epigenetic modification of DNA and transcription and signal transduction factors,

in both SM and other myeloid neoplasms . Among others, mutations have been recurrently reported

in AdvSM in the ASXL1, CBL, DNMT3A, NRAS, RUNX1, SRSF2 and TET2 genes in AdvSM 

. In contrast, the presence of these additional mutations is a relatively infrequent finding in

BMM and ISM patients .

3.1. Mutations Affecting Transcription Factors and Signalling Pathways
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The correct function and development of the human organism strongly relies on the precise regulation and

appropriate production of specific sets of proteins. Gene expression is largely regulated by transcription factors and

the activation of processes involved in various intracellular signalling pathways. In this regard, alterations in genes

involved in these processes, such as the CBL, JAK2, K/NRAS and/or RUNX1 genes , have been associated

with several haematological malignancies. To date, mutations in a total of 11 genes related to transcription factors

and signalling pathways have been described in patients with different subtypes of SM; of note, while some of

these genes have been sporadically reported to be mutated in SM (EPHA7 , FLT3 , IKZF1 , PIK3CD 

, ROS1  and TP53 ) (Tables S1 and S2), others (e.g., CBL, JAK2, K/NRAS and RUNX1) are recurrently

found to be altered in SM, particularly among SM-AHN patients.

The CBL (Casitas B-lineage lymphoma proto-oncogene) gene is located on chromosome 11 and encodes for a

protein involved in the functional regulation (via competitive blockade) of tyrosine kinase (TK) receptors; in addition,

the CBL product also acts in ubiquitination-mediated protein degradation in the proteasome . Overall,

mutations affecting the CBL gene in myeloid malignancies show a predominance of deletions involving the exon 8

of this gene  at frequencies that vary from 15% of patients diagnosed with juvenile myelomonocytic leukaemia,

to 13% of CMML (mostly the CBL Y371 mutation) , 10% of AML and 8% of atypical chronic myeloid

leukaemia cases . Similarly, CBL mutations are found in a variable percentage of SM patients 

, where they are predominantly located at exon 8 (frequently also at codon Y371), their frequency ranging

from <1% in Non-AdvSM patients to >10% of AdvSM cases , including >25% of SM-AHN patients in

some cohorts  (average of 15%). In contrast to other myeloid neoplasms in which the impact of CBL

mutations remains unclear , their presence in SM has been associated with poorer outcomes .

The JAK2 (Janus Kinase 2) gene is located on human chromosome 9 and encodes a protein that acts as an

intracellular (non-receptor) TK that is associated with various cell surface receptors for transducing activating

signals through relevant pathways such as the mitogen-activated protein kinase (MAPK) and signal transducer and

activator of transcription (STATs) pathways . The most common JAK2 activating mutation, the JAK2 V617F

mutation, has been reported in several diagnostic subtypes of MPN , which can explain its high incidence (about

11%) in SM-AHN patients  as compared to other diagnostic subtypes of SM . A recent

study in SM-AHN patients showed that KIT D816V and JAK2 V617F mutations probably arise in two independent

clones in most patients, in which the presence of JAK2 mutations appears to have a low prognostic impact .

The KRAS (Kirsten Rat Sarcoma Viral Oncogene Homolog) and NRAS (Neuroblastoma RAS Viral Oncogene

Homolog) genes are both located on chromosome 12, and they encode proteins involved in signalling pathways

associated with growth factor membrane receptors through their interaction with membrane GTPases. A large

number of somatic mutations involving the KRAS/NRAS genes have been identified, mostly associated with solid

tumours such as lung cancer, pancreatic cancer and colorectal cancer, among other prevalent tumours ; in

some of these tumours such as metastatic colorectal cancer, KRAS and NRAS mutations have also been

associated with a poorer prognosis . In myeloid neoplasms, NRAS mutations have been associated with the

development of AML (7–13%) secondary to different subtypes of MPN; however, it remains unclear whether these

mutations directly promote progression to leukaemia . With regards to SM, KRAS and/or NRAS mutations have
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been sporadically reported in ISM  and MCL cases , while they are more frequently found among SM-

AHN patients, particularly in cases associated with poor-prognosis myeloid neoplasms (i.e., AML) 

; in this setting, some researchers have suggested that these mutations might have an adverse prognostic

impact .

RUNX1 (Runt-Related Transcription Factor 1) is a gene located on human chromosome 21 that encodes a

functional protein that acts as a transcription factor involved in the development of HSC . The most frequent

RUNX1 mutations have been associated with progression from MPN to AML , which could explain the high

frequency of these mutations (up to 37%) among patients with secondary AML . In line with these findings,

the presence of RUNX1 mutations in patients with MDS is associated with resistance to specific chemotherapeutic

drugs and shortened survival . In SM, RUNX1 mutations are preferentially located at exons 4 and 5 of the

gene , with a frequency that ranges from <1% of Non-AdvSM patients to up to 18% of

AdvSM cases, the highest frequency being detected in SM-AHN patients . From a prognostic point of view,

RUNX1-mutated cases have been associated with an adverse outcome, both among Non-AdvSM and AdvSM

patients .

3.2. Mutations in Genes Involved in Epigenetic Regulatory Mechanisms

Although the specific role of each individual epigenetic alteration detected in SM remains unknown ,

recurrent mutations in genes involved in epigenetic modifications of DNA (i.e., ASXL1, CILK1, DNMT3A, EZH2,

IDH1, IDH2, KAT6B, NPM1, SETBP1 and TET2 genes) have been recurrently identified; among these, mutations

involving the ASXL1, DNMT3A, EZH2 and TET2 genes are the most commonly reported ones.

The ASXL1 (ASXL transcriptional regulator 1) gene encodes for a protein that interacts with the retinoic acid

receptor involved in chromatin remodelling, although its precise function remains largely unknown . The most

frequent ASXL1 mutations found in myeloid neoplasms are located at exon 12 , with an overall incidence that

ranges from <7% of patients with essential thrombocytopenia (ET) or polycythaemia vera (PV), to almost 40% of

primary myelofibrosis cases . ASXL1 is also the second most frequently mutated gene in MDS and CMML, and

it is altered in up to 30% of AML patients . Most reported ASXL1 mutations in SM are also located at exon

12  with a highly variable frequency that ranges from 1% of BMM cases to >20% of AdvSM

patients, particularly of SM-AHN cases. Similarly to other myeloid neoplasms , ASXL1 mutations have

been also (recurrently) associated with a worse prognosis in SM .

The DNMT3A (DNA Methyltransferase 3 Alpha) gene located on chromosome 2, encodes for an enzyme

responsible for the methylation of CpG islands, which is critical in various physiological processes during

embryogenesis and/or in the inactivation of the X chromosome . The most frequently described mutation in the

DNMT3A gene occurs at codon R882 , being present in 8–13% of MDS, 26% of AML secondary to MDS and

2% of CMML patients . In general, the presence of DNMT3A mutations in patients with myeloid

malignancies has been associated with a higher number of blasts in BM and greater leukocyte counts in blood 

 in the absence of a clear prognostic impact . Although DNMT3A mutations have been described
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at relatively similarly low frequencies in Non-AdvSM and AdvSM (4% vs. 6%, respectively), their presence has

been associated with a significantly poorer prognosis in some patient cohorts .

The EZH2 (Enhancer of Zeste 2 polycomb repressive complex 2 subunit) gene encodes a protein of the PRC2

complex involved in proliferation, differentiation, ageing and maintenance of the chromatin structure through

methylation, acting as both a tumour suppressor gene and an oncogene . The EZH2 gene is coded in

chromosome 7, and its mutations have been described in both myeloid and lymphoid malignancies, as well as in

solid tumours, where they have been recurrently associated with more advanced tumour stages and metastatic

disease . In myeloid neoplasms, EZH2 mutations have been described in patients with PV (3%), myelofibrosis

(13%), CMML (6%), AML (6%) and MDS (10%) ; in MDS they have been associated with a worse

prognosis . In SM, EZH2 mutations have been reported almost exclusively within AdvSM patients 

, particularly among ASM and SM-AHN cases.

The TET2 (Ten–eleven translocation methylcytosine dioxygenase 2) gene is located on chromosome 4 and

encodes for a protein that catalyses the conversion of 5-methylcytosine (5-mc) to 5-hydroxymethylcytosine (5-hmc)

in the DNA . It is believed that 5-hmc may initiate DNA demethylation by preventing binding to the CpG islands

of DNA methyltransferases characteristic of these sequences . To date, TET2 mutations have been described

in every exon of the gene, and sometimes mutations involving both alleles coexist in the same cell . TET2

mutations are considered to be early events in the development of haematological malignancies such as MPN,

MDS, CMML and different subtypes of leukaemia and lymphoma, as well as in SM . Overall, TET2 mutations

have been described in about 14% of MPN, 23% of MDS (in which they usually occur together with mutations in

SF3B1, U2AF1, ASXL1, SRSF2 and/or DNMT3A and also a normal karyotype ) and 30% of CMML patients

(often associated with mutations in the SRSF2 and U2AF1 genes) . In SM, TET2 is the most

frequently mutated gene other than KIT. In these later patients, TET2 mutations have been reported along the

entire gene sequence but more frequently at exons 3, 9 and 11. As found also in MDS, the coexistence of TET2

and SRSF2 gene mutations has also been reported in SM . Of note, in vitro studies suggest that in a

significant proportion of patients with SM-AHN, TET2 mutations may precede the KIT D816V mutation ,

similarly to what would also occur with ASXL1 and SRSF2 mutations. However, despite TET2 mutations being

significantly more frequently detected in AdvSM vs. Non-AdvSM patients (39% vs. 3% of the cases, respectively)

, and their being associated with the presence of C-findings , they do not

seem to have any prognostic impact in SM .

3.3. Mutations in Genes Involved in Alternative mRNA Splicing

The presence of mutations in genes associated with the spliceosome, responsible for alternative RNA processing,

has been linked to different diagnostic subtypes of haematopoietic malignancies (e.g., MDS) and some solid

tumours (e.g., ocular uveal melanoma or pulmonary fibrosis) . These include mutations in the SF3B1,

SRSF2 and U2AF1 genes, from which mutations in the former two genes have been described in SM at relatively

high frequencies in SM and/or (i.e., SRSF2) in association with poorer outcomes .
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The SRSF2 (serine and arginine rich splicing factor 2) gene encodes for a protein that is critical for alternative

mRNA processing at the post-transcriptional level , which also acts as an important regulator of DNA stability,

being a key player in the DNA acetylation/phosphorylation network . The most frequent somatic mutations of

SRSF2 found in SM patients are located at codon P95 . Among patients with other myeloid

haematological neoplasms, SRSF2 mutations are particularly frequent (28–30%) among CMML cases  and, to

a less extent, MDS (11%) and AML (6%) patients . Recent studies in SM patients show the presence of

SRSF2 mutations in a variable percentage of cases ranging from <1% of Non-AdvSM cases to around one third of

AdvSM patients, being one of the most frequently mutated genes in SM, particularly in SM-AHN cases 

. In contrast to other haematological neoplasms , the presence of SRSF2

mutations has been consistently associated with an adverse prognosis in patients with SM , particularly

among AdvSM cases .

The SF3B1 (splicing factor 3b subunit 1) gene is located in chromosome 2, and it encodes for the largest subunit of

the SF3B complex, a core component of the U2 small nuclear ribonucleoprotein of the U2-dependent spliceosome

. SF3B1 is the most commonly mutated splicing factor gene in MDS patients , in whom it is associated with

a more favourable outcome . In contrast to SRSF2, SF3B1 mutations have been less frequently described in

SM , with only the K666 codon found to be mutated in more than two patient series. Actually,

SF3B1 mutations are detected in <7% of AdvSM patients (most frequently in SM-MDS cases ) (Table S3),

while they are rarely found in Non-AdvSM patients . Likewise, U2AF1 mutations are also relatively rare

in SM, with a higher incidence in AdvSM  vs. Non-AdvSM cases (6% vs. 1%, respectively) (Table S2);

these mutations are mostly located at codons S34  and Q157  of the U2AF1 gene.
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