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Alzheimer’s disease (AD), the most familiar type of dementia, is a severe concern in modern healthcare. Around

5.5 million people aged 65 and above have AD, and it is the sixth leading cause of mortality in the US. AD is an

irreversible, degenerative brain disorder characterized by a loss of cognitive function and has no proven cure.

Deep learning techniques have gained popularity in recent years, particularly in the domains of natural language

processing and computer vision. Since 2014, these techniques have begun to achieve substantial consideration in

AD diagnosis research, and the number of papers published in this arena is rising drastically. Deep learning

techniques have been reported to be more accurate for AD diagnosis in comparison to conventional machine

learning models. 

Alzheimer’s disease  deep learning  biomarkers  positron emission tomography
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1. Introduction

Alzheimer’s disease (AD) is the most widespread neurodegenerative disease, with a prefatory Mild Cognitive

Impairment (MCI) stage in which memory loss is the primary symptom, which gradually worsens with conduct

problems and deprived self-care . However, not everyone identified as having an MCI goes on to develop AD .

A small percentage of people with MCI develop non-AD dementia or stay stable in the MCI stage without

advancing to dementia . Even though there is no cure for AD, it is vital to correctly recognize those in the MCI

phase who will develop AD. Simultaneously, it would be ideal to correctly identify people in the MCI stage who do

not advance to AD so that they are saved from unneeded pharmacologic therapies that at best may give little help

and, at worst, may harm them more with side effects. As a result, much work has gone into developing early

detection tools, particularly at pre-symptomatic phases, in an attempt to reduce or thwart disease progression.

Advanced neuroimaging strategies, such as Magnetic Resonance Imaging (MRI) and Positron Emission

Tomography (PET), have been employed to uncover the structural and molecular biomarkers pertaining to AD .

Brisk advancement in neuroimaging strategies has made the integration of large-scale and high-dimensional multi-

modal neuroimaging data very crucial . As a result, interest in computer-assisted machine learning

methodologies for integrative analysis of neuroimaging data has attracted a lot of attention. Well-known machine

learning approaches such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), Decision Trees
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(DT), etc., have been employed and promise early diagnosis and prediction of AD progression. However,

appropriate pre-processing steps must be applied before using such approaches. Moreover, these approaches

require feature extraction, feature selection, dimensionality reduction, and feature-based classification for

classification and prediction. These steps necessitate specialist knowledge as well as several optimization stages,

which are time-intensive . To overcome these hurdles, deep learning (DL), a looming domain of machine learning

research that employs raw neuroimaging data to produce features through “on-the-fly” learning, is garnering

substantial attention in the field of large-scale, high-dimensional neuroimaging analysis.

2. DL for AD Diagnosis

Figure 1 presents a framework for classification of the AD using DL. The AD dataset is pre-processed first using

pre-processing techniques such as skull stripping, spatial normalization, smoothing, grayscale normalization,

slicing and resizing. Skull stripping is used to segregate non-brain tissues from brain tissues. Spatial normalization

normalizes images from diverse subjects to a common template. Smoothing improves the quality of the images by

removing noise from the images. Grayscale normalization maps the pixel intensity values to a new and more

suitable range. Slicing divides the image into multiple logical images. Finally, resizing is carried out in order to get

the desired image size. Then the pre-processed data are fed as input to the DL model that performs feature

extraction and classification of the input data. Finally, the model is evaluated using performance metrics such as

accuracy, F1 score, area under curve (AUC), and mean squared error (MSE). Table 1 presents a summary of

these research works.

Figure 1. DL-based AD classification framework.

2.1. Feed-Forward DNN for AD Diagnosis

Feed-forward DNN has been utilized by multiple studies for AD diagnosis. Amoroso et al.  proposed a method

based on Random Forest (RF) and DNN for revealing the onset of Alzheimer’s in subjects with MCI. RF was used

for feature selection, and DNN performed the classification of input. The RF consisted of 500 trees and performed

100 rounds, and in each round, 20 crucial features were chosen. DNN consisted of 11 layers with 2056 input units

and four output units. ReLU and tanh were used as the activation functions, and categorical cross-entropy was

used as the loss function. Adam was used as the optimizer in the DNN. The authors compared the proposed

approach with SVM and RF, and it was shown that the proposed method outperforms these techniques.
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Kim and Kim  proposed a DNN-based model for the diagnosis of Alzheimer’s in its early stage. The model takes

the EEG of the subjects as input and classifies it into two groups, MCI and HC (healthy controls). The authors

compared the proposed approach with a shallow neural network, and it was demonstrated that the proposed model

outperforms a shallow neural network. Rouzannezhad et al.  formulated a technique based on DNN for binary

(MCI, CN) and multiclass (EMCI, LMCI, AD, CN) classification of subjects in order to detect AD in the premature

stage. The authors fed multimodal data (MRI, PET and typical neurophysiological parameters) as input to the DNN.

The DNN consisted of three hidden layers, and Adam was used as the optimizer. Moreover, dropout was used to

avoid the over-fitting problem. Experiments carried out in the research work demonstrated that the proposed

technique performs better than the single modal scenarios in which only MRI or PET was fed as input to the DNN

model. Moreover, the fusion of typical neurophysiological data with MRI and PET further enhanced the efficiency of

the approach.

Fruehwirt et al.  formulated a model based on Bayesian DNN that predicts the severity of AD disease using EEG

data. The proposed model consisted of two layers with 100 units each. The authors demonstrated that the

proposed model is a good fit for predicting disease severity in clinical neuroscience. Orimaye et al.  proposed a

hybrid model consisting of DNN and deep language models (D2NNLM) to predict AD. Experiments conducted in

the study demonstrated that the proposed model predicts the conversion of MCI to AD with high accuracy. Ning et

al.  formulated a neural network-based model for the classification of subjects into AD and CN categories.

Moreover, the model predicts the conversion of MCI subjects to AD. MRI and genetic data were fed as input to the

model. The authors compared the proposed model with logistic regression (LR), and it was demonstrated that the

proposed model outperforms the LR model.

Park et al.  proposed a model based on DNN that takes as input the integrated gene expressions and DNA

methylation data and predicts the progression of AD. The authors demonstrated that the integrated data results in

better model accuracy as compared to single-modal data. Moreover, the proposed model outperformed existing

machine learning models. The authors used the Bayesian method to choose optimal parameters for the model. It

was shown that a DNN with eight hidden layers, 306 nodes in each layer, the learning rate of 0.02, and a dropout

rate of 0.85 attains the best performance. Benyoussef et al.  proposed a hybrid model consisting of KNN (K-

Nearest Neighbor) and DNN for the classification of subjects into No-Dementia (ND), MCI and AD based on MRI

data. In the proposed model, KNN assisted DNN in discriminating subjects that are easily diagnosable from hard to

diagnose subjects. The DNN consisted of two hidden layers with 100 nodes each. Experimental results

demonstrated that the proposed model successfully classified the different AD stages.

Manzak et al.  formulated a model based on DNN for the detection of AD in the early stage. RF was used for

feature extraction in the proposed model. Albright  predicted the progression of AD using DNN in both cases,

i.e., the subjects who were CN initially and later got AD and subjects who were having MCI and converted to AD.

Suresha and Parthasarathy  proposed a model based on DNN with the rectified Adam optimizer for the

detection of AD. The authors utilized the Histogram of Oriented Gradients (HOG) to extract crucial features from

the MRI scans. It was shown with the help of experiments that the proposed model outperformed the existing

strategies by a good margin. Wang et al.  utilized gene expression data for studying the molecular changes
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caused due to AD. The study used a DNN model for identifying the crucial molecular networks that are responsible

for AD detection.

2.2. CNN for AD Diagnosis

The following studies utilized CNN for AD diagnosis. Suk and Shen  proposed a hybrid model based on Sparse

Regression Networks and CNN for AD diagnosis. The model employed multiple Sparse Regression Networks for

generating multiple target-level representations. These target-level representations were then integrated by CNN

that optimally identified the output label. Billones et al.  altered the 16-layered VGGNet for classifying the

subjects into three categories, AD, MCI and HC, based on structural MRI scans. Experiments conducted in the

study demonstrated that the authors successfully performed classifications with good accuracy. The authors

claimed that this was achieved without performing segmentation of the MR images.

Sarraf and Tofighi  utilized LeNet architecture for the classification of the AD subjects from healthy ones based

on functional MRI. The authors concluded that due to the shift-invariant and scale-invariant properties, CNN has

got a massive scope in medical imaging. In another study, Sarraf and Tofighi  utilized LeNet architecture for

classification of AD subjects from healthy ones based on structural MR images. The study attained an accuracy of

98.84%. In one more study, Sarraf and Tofighi  utilized LeNet and GoogleNet architectures for AD diagnosis

based on Functional as well as structural MR images. Experiments conducted in the study demonstrated that these

architectures performed better than state-of-the-art AD diagnosis techniques.

Gunawardena et al.  formulated a method based on CNN for the diagnosis of AD in its early stage using

structural MRI. The study compared the performance of the proposed method with SVM, and it was shown that the

CNN model outperformed the SVM. The authors intend to incorporate two more MRI views (axial view and sagittal

view) in addition to the coronal view used in this study in future. Basaia et al.  developed a model based on CNN

for the diagnosis of AD using structural MR images. The study implemented data augmentation and transfer

learning techniques for avoiding the over-fitting problem and improving the computational efficiency of the model.

The authors claimed that the study overcomes limitations of the existing studies that usually focused on single-

center datasets, which limits their usage.

Wang et al.  designed an eight-layered CNN model for AD diagnosis. The authors compared three different

activation functions, namely rectified linear unit (ReLU), sigmoid, and leaky ReLU and three different pooling

functions, namely stochastic pooling, max pooling, and average pooling, for finding out the best model

configuration. It was shown that the CNN model with leaky ReLU activation function and max pooling function gave

the best results. Karasawa et al.  proposed a 3D-CNN based model for AD diagnosis using MR images. The

architecture of proposed 3D-CNN is based on ResNet. It has 36 convolutional layers, a dropout layer, a pooling

layer and a fully connected layer. Experiments conducted in the study demonstrated that the model outperformed

several existing benchmarks.
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Tang et al.  proposed an AD diagnosis model based on 3D Fine-tuning Convolutional Neural Network (3D-

FCNN) using MR images. The authors demonstrated that the proposed model outperformed several existing

benchmarks in terms of accuracy and robustness. Moreover, the authors compared the 3D-FCNN model with 2D-

CNN and it was shown that the proposed model performed better than 2D-CNN in binary as well as multi-class

classification. Spasov et al.  proposed a multi-modal framework based on CNN for AD diagnosis using structural

MRI, genetic measures and clinical assessment. The devised framework had much fewer parameters as compared

to the other CNN models such as VGGNet, AlexNet, etc. This made the framework faster and less susceptible to

problems such as over-fitting in case of scarce-data scenarios.

Wang et al.  proposed a CNN based model for AD diagnosis using two crucial MRI modalities, namely fMRI and

Diffusion Tensor Imaging (DTI). The model classified the subjects into three categories: AD, amnestic MCI and

normal controls (NC). The authors proved that the proposed model performed better on multi-modal MRI than

individual fMRI and DTI. Islam and Zhang  proposed a CNN-based model for AD diagnosis in the early stage

using MR images. The authors trained the model using OASIS dataset, which is an imbalanced dataset. They used

data augmentation to handle the imbalanced nature of the OASIS dataset. Experimental results demonstrated that

the proposed model performed better than several state-of-the-art models. The authors plan to apply the proposed

model to other AD datasets as well in future.

Yue et al.  proposed a CNN-based model for AD diagnosis using structural MR images. The model classified the

subjects into four categories: AD, EMCI, LMCI and NC. Experiments carried out in the research work demonstrated

that the proposed model outperformed several benchmarks. Jian et al.  proposed a transfer learning-based

approach for AD diagnosis using structural MRI. VGGNet16 trained on the ImageNet dataset was used as a

feature extractor for AD classification. The proposed approach successfully classified the input into three different

categories: AD, MCI and CN. Huang et al.  designed a multi-modal model based on 3D-VGG16 for the diagnosis

of AD using MRI and FDG-PET modalities. The study demonstrated that the model does not require segmentation

of the input. Moreover, the authors showed that the hippocampus of the brain is a crucial Region of Interest (ROI)

for AD diagnosis. The authors intend to include other modalities as well in future.

Goceri  proposed an approach based on 3D-CNN for AD diagnosis using MR Images. The proposed approach

used Sobolev gradient as the optimizer, leaky ReLU as the activation function, and Max Pooling as the pooling

function. The research work demonstrated that the combination of optimizer, activation function and pooling

function implemented outperformed all the other combinations. Zhang et al.  utilized two independent CNNs for

analyzing MR images and PET images separately. Then, correlation analysis of the outputs of the CNNs was

performed to obtain the auxiliary diagnosis of AD. Finally, the auxiliary diagnosis result was combined with the

clinical psychological diagnosis to obtain a comprehensive diagnostic output. The authors demonstrated that the

proposed architecture is easy to implement and generates results closer to the clinical diagnosis.

Basheera and Ram  proposed a model based on CNN for AD diagnosis using MR images. The MR images were

divided into voxels first. Gaussian filter was used to enhance the quality of voxels and a skull stripping algorithm

was used to filter out irrelevant portions from the voxels. Independent component analysis was applied to segment
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the brain into different regions. Finally, segmented gray matter was fed as input to the proposed model.

Experimental results demonstrated that the proposed model outperformed several state-of-the-art models. Spasov

et al.  proposed a parameter-efficient CNN model for predicting the MCI to AD conversion using structural MRI,

demographic data, neuropsychological data, and APOe4 genetic data. Experiments carried out in the research

work demonstrated that the proposed model performed better than several existing benchmarks.

Ahmad and Pothuganti  performed a comparative analysis of SVM, Regional CNN (RCNN) and Fast Regional

CNN for AD diagnosis. The study demonstrated that the Fast RCNN outperformed the other techniques. Lopez-

Martin et al.  proposed a randomized 2D-CNN model for AD diagnosis in the early stage using MEG data. The

research work demonstrated that the proposed model outperformed the classic machine learning techniques in AD

diagnosis. Jiang et al.  proposed an eight-layered CNN model for AD diagnosis. The proposed model

implemented batch normalization, data augmentation and drop-out regularization for achieving high accuracy. The

authors compared the proposed model with several existing techniques, and it was demonstrated that the

proposed model outperformed them.

Nawaz et al.  proposed a 2D-CNN based model for AD diagnosis using MRI data. The proposed model

classified the input images into three groups: AD, MCI and NC. The authors compared the proposed model with

AlexNet and VGGNet architectures, and it was demonstrated that the proposed model outperformed these

architectures. Bae et al.  modified the Inception-v4 model pre-trained on ImageNet dataset for AD classification

using MRI data. The study used datasets from subjects with two different ethnicities. The study demonstrated that

the model has the potential to be used as a fast and accurate AD diagnostic tool. Jo et al.  proposed a model

based on CNN for finding the correlation between tau deposition in the brain and probability of having AD. The

study also identified the regions in the brain that are crucial for AD classification. According to the study, these

regions include hippocampus, para-hippocampus, thalamus and fusiform.

2.3. AE for AD Diagnosis

The following studies utilized AE for AD diagnosis. Lu et al.  proposed a SAE-based model for predicting the

progression of AD. The proposed model was named Multi-scale and Multi-modal Deep Neural Network (MMDNN)

as it integrated information from multiple areas of the brain scanned using MRI and FDG-PET. Experiments carried

out in the research work demonstrated that analyzing both MRI and FDG-PET gives better results than the single

modal settings. Liu et al.  designed a SAE-based model for the diagnosis of AD in its early stage. The authors

demonstrated that the designed model performed well even in the case of limited training data. Moreover, the

authors analyzed the performance of the model against Single-Kernel SVM and Multi-Kernel SVM, and it was

revealed that the proposed model outperformed these models.

Lu et al.  proposed a DL model based on SAE for discriminating pre-symptomatic AD and non-progressive AD in

subjects with MCI using metabolic features captured with FDG-PET. The parameters in the model were initialized

using greedy layer-wise pre-training. Softmax-layer was added for performing the classification. The proposed
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model was compared with the existing benchmark techniques that utilized FDG-PET for capturing the metabolic

features, and it was shown that it performed better than those techniques.

2.4. RNN for AD Diagnosis

Lee et al.  proposed a RNN-based model that extracted temporal features from multi-modal data for forecasting

the conversion of MCI subjects to AD patients. The data were fused between different modalities, including

demographic information, MRI, CSF biomarkers and cognitive performance. The authors proved that the model

outperformed the existing benchmarks. Furthermore, it was shown that the multi-modal model outperformed the

individual single-modal models.

2.5. DBN for AD Diagnosis

Ortiz et al.  proposed two methods based on DBN for the early diagnosis of AD. These methods worked on

fused functional and structural MRI scans. The first one, named as DBN-voter, consisted of an ensemble of DBN

classifiers and a voter. Four different voting schemes were analyzed in the study, namely majority voting, weighted

voting, classifiers fusion using SVM, and classifiers fusion using DBN. As the second model, FEDBN-SVM used

DBNs as feature extractors and carried out classification using SVM. It was demonstrated that FEDBN-SVM

outperformed DBN-voter in addition to the existing benchmarks, and in the case of DBN-voter, DBNs with

classifiers fusion using SVM performed better.

2.6. GAN for AD Diagnosis

Ma et al.  proposed a GAN-based model for the differential diagnosis of frontotemporal dementia and AD

pathology. The model extracted multiple features from MR images for classification. Moreover, data augmentation

was performed in order to avoid over-fitting caused due to limited data problem. Experimental analysis carried out

in the research work revealed that the model showed promising results in the differential diagnosis of

frontotemporal dementia and AD pathology. The authors claimed that the proposed model could be used for the

differential diagnosis in other neurodegenerative diseases as well.

2.7. Hybrid DL Models for AD Diagnosis

The following studies utilized hybrid DL models for AD diagnosis. Zhang et al.  proposed 3D Explainable

Residual Self-Attention Convolutional Neural Network (3D ResAttNet) for diagnosis of AD using structural MR

images. The proposed model is a CNN with a self-attention residual mechanism, and explainable gradient-based

localization class activation mapping was employed that provided visual analysis of AD predictions. The self-

attention mechanism modeled the long-term dependencies in the input and the residual mechanism dealt with the

vanishing gradient problem. The authors compared the proposed model with 3D-VGGNet and 3D-ResNet, and it

was shown that the proposed model performed better than these models.
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Payan and Montana  formulated a model based on 3D-CNN for the prediction of AD using MR images. The

study employs Sparse AE for pre-training the convolutional filters. Experiments conducted in the research work

revealed that the model outperformed the existing benchmarks. Hosseini et al.  proposed a hybrid model

consisting of AE and 3D-CNN for early stage diagnosis of AD. The variations in anatomical shapes of brain images

were captured by AE, and classification was carried out using 3D-CNN. The authors compared the proposed model

with the existing benchmarks, and it was established that the proposed model outperformed those techniques.

Moreover, the authors plan to apply the proposed model for the diagnosis of other conditions such as autism, heart

failure and lung cancer.

Vu et al.  proposed an AD detection system based on High-Level Layer Concatenation Auto-Encoder (HiLCAE)

and 3D-VGG16. HiLCAE was used as a pre-trained network for initializing the weights of 3D-VGG16. The

proposed system worked on the fused MR and PET images. Experiments carried out in the research work

demonstrated that the proposed system detected AD with good accuracy. The authors intend to develop deeper

networks for both HiLCAE and VGG16 in future so as to improve the accuracy further.

Warnita et al.  proposed a gated CNN-based approach for AD diagnosis using speech transcripts. The proposed

approach captured temporal features from speech data and performed classification based on the extracted

features. The authors plan to apply the proposed approach to different languages in the future. Feng et al. 

proposed a hybrid model consisting of Stacked Bidirectional RNN (SBi-RNN) and two 3D-CNNs for diagnosis of AD

in its early stage. CNNs extracted preliminary features from MRI and PET images, while SBi-RNN abstracted

discriminative features from the cascaded output of CNNs. The output from SBi RNN was fed to a softmax

classifier that generated the model output. Experiments conducted in the study demonstrated that the proposed

model outperformed state-of-the-art models.

Li and Liu  proposed a framework consisting of Bidirectional Gated Recurrent Unit (BGRU) and DenseNets for

hippocampus analysis-based AD diagnosis. The DenseNets were trained to capture the shape and intensity of MR

images and BGRU abstracted high-level features between the right and left hippocampus. Finally, a fully connected

layer performed classification based on the extracted features. Experiments conducted in the study revealed that

the proposed framework generated promising results. Oh et al.  proposed a model based on end-to-end learning

using CNN for carrying out the following classifications: AD versus NC, pMCI (probable MCI) versus NC, sMCI

(stable MCI) versus NC, and pMCI versus sMCI. The authors utilized Convolutional Auto-Encoder for performing

AD versus NC classification, and transfer learning was implemented to perform pMCI versus sMCI classification.

Experiments carried out in the study showed that the proposed model worked better than several existing

benchmarks.

Chien et al.  developed a system for assessing the risk of AD based on speech transcripts. The system

consisted of three components: a data collection component that fetched data from the subject, a feature sequence

generator that converted the speech transcripts into the features, and an AD assessment engine that determined

whether the person had AD or not. The feature sequence generator was built using a deep convolutional RNN, and
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the AD assessment engine was realized using a bidirectional RNN with the gated recurrent unit. Experimental

analysis carried out in the research work revealed that the system gives promising results.

Kruthika et al.  proposed a hybrid model consisting of 3D Sparse AE, CNN and capsule network for detection of

AD in its early stage. The authors revealed that the hybrid model worked better than the 3D-CNN. Basher et al. 

proposed an amalgam of Hough CNN, Discrete Volume Estimation-CNN (DVE-CNN) and DNN for AD diagnosis

using structural MR images. Hough CNN has been used to localize right and left hippocampi. DVE-CNN was

utilized to mine volumetric features from the pre-processed 2D patches. Finally, DNN classified the input based on

the features extracted using DVE-CNN. The study demonstrated that the proposed approach outperformed the

existing benchmarks by a good margin.

Roshanzamir et al.  utilized a bidirectional encoder with logistic regression for early prediction of AD using

speech transcripts. The authors implemented the concept of data augmentation for dealing with the limited dataset

problem. Experiments conducted in the study demonstrated that the bidirectional encoder with logistic regression

outperformed the existing benchmarks. Zhang et al.  proposed a densely connected CNN with attention

mechanism for AD diagnosis using structural MR images. The densely connected CNN extracted multiple features

from the input data, and the attention mechanism fused the features from different layers to transform them into

complex features based on which final classification was performed. It was established that the model

outperformed several existing benchmark models.

Table 1. Summary of research works.
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Work Year Biomarker DL Method Dataset Performance

2014 MRI and PET SAE
ADNI-311 subjects
(AD-65, cMCI-67,

ncMCI-102, NC-77)

Accuracy (NC/AD): 87.76%
Accuracy (NC/MCI): 76.92%

2015 MRI

Residual Self
Attention 3D

Convolutional
Neural Network

ADNI-835 subjects
(AD-200, MCI-404,

NC-231)

Accuracy (NC/AD): 91.3% ±
0.012

Accuracy (sMCI/pMCI):
82.1% ± 0.092

2015 MRI
CNN + Sparse

AE

ADNI-2265 subjects
(AD-755, MCI-755,

HC-755)

Accuracy (HC/MCI/AD):
89.47%

Accuracy (HC/AD): 95.39%
Accuracy (AD/MCI): 86.84%
Accuracy (HC/MCI): 92.11%

2016 MRI CNN
ADNI-805 subjects
(AD-186, MCI-393,

NC-226)

Accuracy (NC/ADI): 91.02%
± 4.29

Accuracy (NC/MCI): 73.02%
± 6.44

Accuracy (sMCI/pMCI):
74.82% ± 6.80
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Work Year Biomarker DL Method Dataset Performance

2016 MRI CNN
ADNI-900 subjects
(AD-300, MCI-300,

HC-300)

Accuracy (HC/MCI/AD):
91.85%

2016 fMRI CNN
ADNI-43 subjects
(AD-28, NC-15)

Accuracy(NC/AD): 96.85%

2016 MRI and fMRI DBN
ADNI-275 subjects
(AD-70, MCI-111,
LMCI-26, NC-68)

Accuracy (NC/AD): 90%
Accuracy (MCI/AD): 84%
Accuracy (NC/MCI): 83%

2016 MRI CNN + AE
ADNI-210 subjects

(AD-70, MCI-70, NC-
70)

Accuracy (NC/MCI/AD):
89.1%

2016 MRI CNN
ADNI-302 subjects
(AD-211, HC-91)

Accuracy (HC/AD): 98.84%

2016 MRI and fMRI CNN

ADNI (fMRI-144
subjects: AD-52, CN-

92)
ADNI(MRI-302

subjects: AD-211,
CN-91)

Accuracy (fMRI (CN/AD)):
99.9%

Accuracy (MRI (CN/AD)):
98.84%

2017 MRI DNN
ADNI-240 subjects
(AD-60, cMCI-60,
MCI-60,HC-60)

Accuracy
(HC/MCI/cMCI/AD): 53.7 ±

1.9%

2017 MRI CNN
ADNI-504 subjects
(AD-101, MCI-234,

CN-169)
Accuracy (CN/MCI/AD): 96%

2018 MRI and FDG-PET SAE
ADNI-1051 subjects
(NC-304, sMCI-409,
pMCI-112, AD-226)

Accuracy
(NC/AD): 93.58%,

Accuracy
(sMCI/pMCI): 81.55%

2018 EEG DNN

Data collected from
Chosun University

Hospital and Gwangju
Optimal Dementia
Center located in
South Korea-20

subjects (MCI-10,
HC-10)

Accuracy (NC/MCI): 59.3%

2018 MRI and FDG-PET
images

SAE ADNI-1242 subjects
(sNC-360, sMCI-409,

Accuracy (sMCI/pMCI):
82.93%
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Work Year Biomarker DL Method Dataset Performance
pNC: 18, pMCI-217,

sAD-238)

2018 MRI CNN

ADNI-1409 subjects
(AD-294, MCI-763,

HC-352), Milan
dataset-229 subjects

(AD-124, MCI-50,
HC-55)

Accuracy (HC/AD): 98.2%
Accuracy (HC/cMCI): 87.7%
Accuracy (HC/sMCI): 76.4%
Accuracy (cMCI/AD): 75.8%
Accuracy (sMCI/AD): 86.3%

Accuracy (cMCI/sMCI):
74.9%

2018
MRI and AV-45 PET

data
DNN

ADNI-896 subjects
(CN-248, AD-149,

EMCI-296, LMCI-193)

Accuracy (CN/EMCI): 84%
Accuracy (CN/LMCI): 84.1%
Accuracy (CN/AD): 96.8%
Accuracy (EMCI/LMCI):

69.5%
Accuracy (EMCI/AD): 90.3%
Accuracy (LMCI/AD): 80.2%

2018 EEG DNN

Data collected from
Medical Universities
of Graz, Innsbruck
and Vienna, as well

as Linz General
Hospital—188

subjects (Probable
AD-133, Possible AD-

55)

Mean Squared Error
(Probable AD/Possible AD):

12.17

2018 MRI and FDG-PET AE + CNN
ADNI-615 subjects
(AD-193, MCI-215,

NC-207)

Accuracy (MCI/AD): 93%
Accuracy (NC/MCI): 95%
Accuracy (NC/AD): 98.8%
Accuracy (NC/MCI/AD):

91.13%

2018 MRI CNN

OASIS dataset-126
subjects (AD-28, HC-

98) and data from
local hospitals-70
subjects (AD-70)

Accuracy (HC/AD): 97.65%

2018 MRI CNN
ADNI-1728 subjects
(AD-346, MCI-450,
LMCI-358, NC-574)

Accuracy (NC/AD): 94%
Accuracy (NC/MCI): 90%

Accuracy (NC/MCI/AD): 87%

2018 MRI CNN
ADNI-391 subjects
(AD-150, MCI-129,

NC-112)

Accuracy (NC/AD): 96.81%
Accuracy (MCI/AD): 88.43%
Accuracy (NC/MCI): 92.62%

Accuracy (NC/MCI/AD):
91.32%

[24]

[8]

[9]

[53]

[25]

[26]

[27]
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Work Year Biomarker DL Method Dataset Performance

2018 Speech transcripts DNN
DementiaBank

dataset
AUC (MCI/AD): 0.815

2018

MRI, clinical
assessment and
genetic (APOe4)

measures

CNN
ADNI-800 subjects
(AD-200, MCI-400,

NC-200)
Accuracy (NC/MCI/AD): 99%

2018
fMRI and Diffusion

Tensor Imaging
(DTI)

CNN
ADNI-105 subjects
(AD-35, aMCI-30,

NC-40)

Accuracy (NC/aMCI/AD):
92.06%

2018 Speech transcripts Gated CNN
DementiaBank

dataset-267 subjects
(AD-169, HC-98)

Accuracy (HC/AD): 73.6%

2018

MRI and single
nucleotide

polymorphism
(SNP) data

DNN
ADNI-721 subjects
(AD-138, MCI-358,

CN-225)
AUC (CN/MCI/AD): 0.992

2018 MRI CNN
OASIS dataset-416

subjects

Accuracy (Non
Demented/very

Mild/Mild/Moderate): 93%

2018 MRI and PET CNN + RNN
ADNI-397 subjects
(AD-93, pMCI-76,

sMCI-128, CN-100)

Accuracy (NC/AD): 94.29%
Accuracy (NC/pMCI):

84.66%
Accuracy (NC/sMCI):

64.47%

2018 MRI CNN
ADNI-1663 subjects
(AD-336, MCI-542,

CN-785)

Accuracy (NC/LMCI): 94.5%
Accuracy (NC/AD): 96.9%

Accuracy (LMCI/AD): 97.2%
Accuracy (EMCI/AD):

97.81%
Accuracy (EMCI/LMCI):

94.8%

2019
gene expression

and DNA
methylation profiles

DNN

GSE33000 and
GSE44770 (gene

expression),
prefrontal cortex
GSE80970 (DNA

methylation)

Accuracy (NC/AD): 82.3%

2019 MRI DNN OASIS-416 subjects Accuracy (NC/AD): 86.66%

2019 MRI CNN ADNI-150 subjects
(AD-50, CN-50, MCI-

Accuracy (CN/AD): 99.14%
Accuracy (AD/MCI): 99.3%

[10]

[28]

[29]

[54]
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[30]

[55]
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[13]

[32]
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Work Year Biomarker DL Method Dataset Performance
50) Accuracy (CN/MCI): 99.2%

2019 MRI DNN
ADNI-291 subjects
(AD-97, CN-194)

Accuracy (CN/AD): 67%

2019 MRI CNN + RNN
ADNI-807 subjects
(AD-194, MCI-397,

NC-216)

Accuracy (NC/AD): 91.0%
Accuracy (NC/MCI): 75.8%

Accuracy (sMCI/pMCI):
74.6%

2019 MRI AE+ CNN
ADNI-694 subjects
(AD-198, NC-230,

sMCI-101, pMCI-166)

Accuracy (AD/NC): 86.60%
± 3.66%

Accuracy (pMCI/NC):
77.37% ± 3.55%

Accuracy (sMCI/NC):
63.04% ± 4.16%

Accuracy (pMCI/AD):
60.97% ± 5.33%

Accuracy (sMCI/AD):
75.06% ± 3.86

2019 MRI and FDG-PET CNN
ADNI-2145 subjects
(AD-647, sMCI-441,
pMCI-326, HC-731)

Accuracy (NC/AD): 90.10%
Accuracy (NC/pMCI):

87.46%
Accuracy (sMCI/pMCI):

76.90%

2019 MRI CNN
ADNI-315 subjects
(AD-185, HC-130)

Accuracy (HC/AD): 98.06%

2019

Demographic
information, neuro-

imaging
phenotypes

measured by MRI,
cognitive

performance, and
CSF measurements

RNN
ADNI-1618 subjects
(AD-338, MCI-865,

CN-415)
Accuracy (CN/MCI/AD): 81%

2019 Speech transcripts CNN + RNN
DementiaBank

dataset
AUC (NC/AD): 0.838

2019 MRI CNN + AE
ADNI-1941 subjects
(AD-345, MCI-991,

NC-605)

Accuracy (MCI/AD): 94.6%
Accuracy (NC/AD): 92.98%
Accuracy (NC/MCI): 94.04%

2019 MRI and PET CNN
ADNI-392 subjects
(AD-91, MCI-200,

CN-101)

Accuracy (NC/AD): 98.47%
Accuracy (NC/MCI): 85.74%
Accuracy (AD/MCI): 88.20%

[14]

[56]

[57]
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[47]

[58]

[59]
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Work Year Biomarker DL Method Dataset Performance

2019 MRI CNN
ADNI-1820 images
(AD-635, MCI: 548,

CN: 637)

Accuracy (CN/MCI/AD):
86.9%

Accuracy (CN/AD): 100%
Accuracy (MCI/AD): 96.2%
Accuracy (CN/MCI): 98%

2019 MRI DNN ADNI-1737 subjects AUC (NC/MCI/AD): 0.866

2019
MRI and clinical

features
CNN

ADNI-785 subjects
(AD-192, MCI-409,

HC-184)
Accuracy (MCI/AD): 86%

2020 MRI GAN

ADNI-1114 subjects
and Frontotemporal
Lobar Degeneration

Neuroimaging
Initiative (NIFD)-840

subjects

Accuracy (NC/AD): 88.28%

2020 MRI CNN ADNI Test time (NC/AD): 0.2 s

2020 MEG CNN

Data collected from
Centre for Biomedical

Technology, Spain-
132 subjects (MCI-78,

HC-54)

F1-Score (HC/MCI) = 0.92

2020 MRI CNN

OASIS dataset-126
subjects (AD-28, HC-

98) and data from
local hospitals-70
subjects (AD-70)

Accuracy (HC/AD): 97.76%
± 0.41

2020 MRI CNN
ADNI-159 subjects

(AD-45, MCI-62, NC-
52)

Accuracy (NC/MCI/AD):
99.89%

2020 MRI CNN

ADNI-390 subjects
(AD-195, CN-195),

SNUBH-390 subjects
(AD-195, CN-195)

Accuracy (ADNI (CN/AD)):
89%

Accuracy (SNUBH
(CN/AD)): 88%

2020 fMRI and PET CNN

fMRI ADNI dataset-54
subjects (AD-27, HC-

27)
PET ADNI dataset-
2675 images (AD-

900, HC-1775)

Accuracy (fMRI dataset
(HC/AD)): 99.95%

Accuracy (PET ADNI
(HC/AD)): 73.46%

2020 MRI CNN Kaggle’s MRI dataset Accuracy (MCI/AD): 96%

[36]
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