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Bio-composites are degradable, renewable, non-abrasive, and non-toxic, with comparable properties to those of

synthetic fiber composites and used in many applications in various fields. Naturals fibers are abundant and have

low harvesting costs with adequate mechanical properties. Hazards of synthetic fibers, recycling issues, and toxic

byproducts are the main driving factors in the research and development of bio-composites. Bio-composites are

fabricated by combining natural fibers in a matrix material. The matrix material can be biodegradable, non-

biodegradable, or synthetic. Synthetic matrix materials, along with natural fibers, are used to form hybrid bio-

composites.

Bio-Composites  natural fibers

1. Introduction

Increased focus is being placed on the need to reduce global warming, environmental damage, and pollution. The

scientific community has been paying significant attention to developing environmentally friendly and bio-

degradable materials that can replace the non-renewable materials that pose a threat to the environment  . Bio-

composite materials have become the center of attention due to their environmentally friendly and biodegradable

nature . A number of hazards and shortcomings are associated with synthetic composites. They have larger

carbon footprints and need a large amount of energy for fabrication . A variety of inorganic fibers, including nylon,

Kevlar, polypropylene, and glass, are used in synthetic composites . Fossil fuel depletion also endangers the

sustainability of these synthetic materials in the long term .

The dangers of climate change have made us focus more on reducing global warming, which made many

developed countries pledge to limit the increase in average worldwide temperature below 2 °C . Unlike synthetic

materials, bio-composites can be degradable without emissions of poisonous gases or substances . Microbes

degrade biomaterials into an organic substance through compositing along with the release of minerals, water, and

CO  . Industries are encouraged to use bio-friendly materials to have a better impact on the environment .

These bio-composite materials are promising candidates to overcome contemporary environmental issues, 

reduce energy demand,  and to reduce carbon footprints . On average 17% less energy is required to

produce natural composites than synthetic counterparts .

The global bio-composite market’s projected growth rate is 9.59%, to reach a USD 41 billion net worth by 2025 .

The automobile and construction industries are two major sectors for bio-composites. Bio-composites are eco-

friendly, degradable, renewable, non-abrasive, non-toxic, and have low densities . These materials are used in
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cars to reduce the overall weight and to enhance fuel efficiency. Bio-composites are utilized to manufacture door

panels, armrests, seatbacks, and trays . They are also used externally for trim parts and brake shoes. Bio-

composite parts are better at sound absorbance and shatter resistance .

Fibers used in bio-composites are produced from agricultural products and byproducts, which are subsequently

intermixed with different polymer-based matrices . Biodegradable and renewable polymer matrices are mixed

with natural fibers known as lignocellulosic fibers . Natural fibers are mostly used as reinforcements but also can

be used as matrix material . Bio-composites fall under the category of polymer matrix composites. Polymer

matrix composites are made up of natural (PLA, PHA, PCL) or synthetic matrix materials (thermoplastic,

thermosetting plastic), with one or more reinforcements such as carbon fibers, glass fibers or natural fibers in the

case of bio-composites . Cellulose fibers are organic and are produced from biomass  and associated

derivatives of agricultural products . Cellulose is currently considered one of the most studied and used

polymers, followed by lignin . Approximately 40–60% of plant matter consists of cellulose, in addition to

hemicellulose, lignin, and pectin . The basic cellulose unit is anhydro-d-glucose, which contains three hydroxyls

responsible for hydrophilic nature . Cellulose offers superior mechanical properties, while lignin reduces water

sorption and enhances thermal stability . Lignin serves to bind plant parts together, thereby acting as a

cementing material. It also influences the structure and properties of plants . The lumen is a hollow central cavity

in a fiber cell, responsible for reducing the density, increasing thermal insulation, and noise-resistance properties

. Microfibril is a primary structural unit in the cell wall of a plant. The angle at which the microfibril fiber connects

with the cell wall directly influences the mechanical properties and acts as a reinforcing element arising from the

linear linkage of crystallites . Certain types of lignocellulosic fibers exhibit mechanical properties and overall

strength comparable to that of synthetic fibers such as fiberglass .

Thermoplastic polymer matrices, such as polypropylene and polyethylene, are hydrophobic and offer low

compatibility with natural fibers. Surface treatments decrease the fibers’ surface energy to optimize the strength

and properties of the composite . Bio-composite performance is ultimately dependent on the fiber/matrix

interphase. Adhesion between the matrix and fiber determines the final properties of the composite . The

mechanical properties of a composite depend on the amount and type of filler being used, how fiber adheres to the

material, and the final fiber orientation in the matrix . The properties of these lignocellulosic fibers are also

dependent on the origin of the plant species, fiber, location of the plant, environment around the plant, and

methods to extract the fibers .

Polybutylene succinate (PBS), polylactic acid (PLA) , poly hydroxyalkanotes (PHA) , and poly(ε-

caprolactone) (PCL)  are commonly used biodegradable matrices in bio-composites. Synthetic matrix materials

are not biodegradable. Some synthetic matrix materials are polyethylene, polypropylene, polycarbonate,

polyvinylchloride, nylon, acrylics, and carbon steel Kevlar, epoxy resins, etc. . Out of these, due to its eco-

friendly and degradable nature, PLA has attracted significant attention. PLA is synthesized via direct starch

fermentation. The use of a ring-opening approach to polymerize cyclic lactide dimers is preferred for PLA with a

higher molecular weight. PLA is crystalline, transparent, and brittle in nature [9]. PHA is generally produced using a

microbial process in carbon substrate, and it degrades easily at room temperature. However, it has mostly limited
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use due to the high cost . PBS belongs to aliphatic polyesters and is produced by two-step polycondensation.

PBS is semi-crystalline with an aliphatic structure and is biodegradable due to the presence of odd ester bonds.

However, like PLA, it has a higher production cost . PCL is developed from crude oil through the ring opening

polymerization of caprolactone monomers . The action of microorganisms degrades it with water, CO , minerals,

and methane. PLA exhibits inferior properties in comparison with PBS and PCL, with higher production costs .

Green bio-composites have pros and cons. Limitations of bio-composites include poor fire resistance , restricted

processing temperature, low thermal resistance , high hydrophilicity, low mechanical and thermo-physio

properties , and poor fiber–matrix adhesion . Due to their hydrophilic nature, these composites tend to

absorb water from the immediate environment , causing the composite to swell. Stem fiber, leaf fiber, and seed

fiber are the three main fibers . The most common natural fibers are hemp, doum, coir, jute, almond shells, rice

husk, oat husk, wheat straw, switchgrass, corona, kenaf, coconut, bamboo, bagasse, banana, sisal, sugarcane, oil

palm empty fruit bunch .

2. Applications of Bio-Composites

A small number of bio-composites are commercialized and developed. Most of the bio-composites are still under

research and development. New processing techniques and technologies are being developed to produce bio-

composites at a lower cost. Mostly, bio-composites are used in non-structural and non-load-bearing applications.

Developing countries are abundant in natural fibers, but the lack of resources prevents using these fibers in

composites and developing new processing techniques, while developed countries in Europe and Asia are ahead

in the development of bio-composites . Despite the benefits of these bio-composites, some challenges such as

cost reduction, reliable performance, and inferior mechanical properties are still to be addressed for mass

production . Despite these challenges, bio-composites still have great potential to be used in various

applications. Research has shown promising results, but more research and developments are required to

commercialize bio-composites successfully [67]. Focus is being paid to achieve properties comparable with

synthetic composites. Bio-composites are biodegradable, renewable, and natural composites with minimum impact

on the environment and considerably lower carbon emissions . Growing awareness among people and new

laws for environmental protection will promote meaningful improvements for bio-composites. Additionally,

developments in agricultural sciences will help to harvest fibers with more favorable properties for these bio-

composites. In the near future, bio-composites may completely eradicate the dependence on synthetic products

. The energy required for the production of bio-composite is much less than that of synthetic fiber. The

production of synthetic composites is energy extensive, while bio-composites save energy . Different

governments are encouraging industries to use bio-degradable materials to overcome waste and pollution-related

issues . One of the main drawbacks in the use of bio-composites is the variation of mechanical properties in

plant fibers. Change in the region, climate, and even fiber from another planet of the same type will likely be

different in properties . These shortcomings are balanced through different processing and chemical treatments.

The automobile, construction, textile, and packaging industries are the primary industries to employ bio-

composites.
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2.1. Automobile Industry

Conventional composites have glass and carbon fiber reinforcements that have so far dominated the automobile

industry. Renewable alternatives are required to address environmental concerns and reduce petroleum-based

composites’ carbon footprints . Several candidates have been studied, exhibiting promising results, while others

are in the development phase. Various natural fibers such as flax, hemp, kenaf, jute, coir, and sisal are used to

produce bio-composites for automobiles. Bio-composites are also used in automobiles to reduce overall weight, cut

down production costs, and improve fuel efficiency. Bio-composites are used to produce different components,

such as bumpers, door panels, seat pads, cup holders, trunk covers, armrests, headrests, and seat pads.

Furthermore, bio-composites are known to reduce vibrations and noise through damping . Ford uses soy foam

seats, bio-based cushions, and hemp fiber composites in the front grills in various vehicle models . Similarly,

Mercedes-Benz use jute-based bio-composites for interior panels, flax fiber composites for shelves and trunk

covers, and sisal-based composites for rear panel shelves . The use of bio-composites led to a reduced weight

of roughly up to 10%, and energy consumption up to 80%, compared to synthetic composites. Toyota use kenaf

fibers in tire covers, soy foams for vehicle seats, and PP/PLA-based bio-composites inside trims, toolbox areas,

and package trays . Similarly, Volkswagen use bio-composites to make door panels, flap linings, door inserts,

and package trays.

2.2. Construction and Textile Industry

In the construction industry, bio-composites are used to manufacture windows, doors, window frames, ceilings,

floor mating, and roof tiles. Load-bearing applications include the manufacturing of floor slabs, beams, pipes, and

tanks. Furthermore, bio-composites are employed in the repairing and rehabilitation of various structural

components. Due to better thermal and acoustic properties, natural fiber composites are used as insulating and

soundproofing materials . Hemp/lime/concrete composites have exhibited better sound absorption ability than

any other binders . Life cycle assessment, durability properties, and ecological aspects are taken into account

before selecting any bio-composite as a construction material. Low weight and comparable mechanical properties

with synthetic composites are crucial for construction applications. Similarly, natural fiber composites have

enormous potential to be used in the textile industry to manufacture ropes, sacks, bags, and clothes. Moreover,

many countries are adopting bio-composite materials to address environmental issues. Many industries are

investing in bio-composites due to future demand.

3. Conclusions

The potential of bio-composites to be used as eco-friendly, renewable, and sustainable substitutes is the main

driving force for research, development, and commercialization. The use of bio-composites in various applications

has opened avenues for research studies and industries to explore further. Early on, the lack of fabrication

methods and higher production costs restricted bio-composites’ growth, but environmental issues have removed

these hurdles. Bio-composites are regarded as the best replacement for synthetic composites because of their

comparable mechanical properties and eco-friendly nature. Synthetic composites cause pollution, emit toxic
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byproducts, use excessive energy, and have recyclability issues and high carbon footprints. The sustainability of

synthetic composites comes into question due to the depletion of finite petroleum resources. The use of synthetic

composites must be limited to protect the environment. In this review, bio-composites were analyzed to provide an

overview of the contemporary developments.

The structure, morphology, content, and mechanical properties of natural fibers were discussed in detail, along with

natural fiber constituents. Micro-fibrils, lumen, and different bonding structures play important roles in determining

the mechanical properties and low density of fibers. Different modification techniques to improve shortcomings

such as the fiber/matrix adhesion, hydrophilicity, and flammability of natural fibers were employed. Modification

techniques enhance fiber/matrix interlocking, as well as moisture and thermal resistance. Some of the degradable

polymer matrices are polybutylene succinate (PBS), polylactic acid (PLA), poly hydroxyalkanotes (PHA), and

poly(ε-caprolactone) (PCL). During biodegradation, biopolymers are decomposed through microbial actions with

the release of CO , various compounds, and biomass. The addition of natural fibers to these bio-degradable matrix

materials enhances strength and other properties. Bio-composites are manufactured through conventional

methods such as compression molding, hand lay-up, injection, extrusion, and pultrusion. Some of these

manufacturing techniques and research studies are focusing on the development and modifications of existing

techniques to increase the quality of bio-composites. Bio-composites were analyzed in terms of production cost,

final design, shape and size, raw material properties, and process constraints. Various applications of bio-

composites include construction, automobile, and textile industries. With the ever-increasing demand for bio-

composites, numerous new potential applications for bio-composites will be developed in the near future.
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