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Parkinson’s disease is a neurodegenerative condition characterized by motor dysfunction resulting from the
degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of
movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of
Parkinson’s disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and
oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPS) in
the central nervous system, FABP3, FABP5, and FABP7, impact a-synuclein aggregation, neurotoxicity, and
neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their
membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is
responsible for a-synuclein propagation into neurons and intracellular accumulation, affecting the loss of

mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis.

Parkinson’s disease tyrosine hydroxylase dopaminergic neurons fatty acid-binding protein

a-synuclein mitochondria dementia with Lewy bodies

1. Physiological Function of FABP and Involvement in
Neurodegenerative Diseases

Fatty acids perform a variety of physiological functions in the body, serving as a source of energy for internal
combustion, a major component of cell membranes, and a regulator of inflammatory responses. Excessive intake
of fatty acids contributes to energy overload, obesity, and risk of brain inflammation. Fatty acids include saturated
fatty acids; unsaturated fatty acids, which include monounsaturated and polyunsaturated fatty acids; and trans fatty
acids. Some of these polyunsaturated fatty acids cannot be synthesized in the animal’'s body and must be obtained
from the diet. An excess of or deficiency in polyunsaturated fatty acids are associated with various functional
disorders, neurological symptoms, and an increased risk of disease pathogenesis. Polyunsaturated fatty acids can
be classified into omega-3 fatty acids, represented by docosahexaenoic acid (DHA) and eicosapentaenoic acid

(EPA), and omega-6 fatty acids, which are metabolized into linoleic acid and arachidonic acid.

Because fatty acids are hydrophobic, they require carrier proteins to transport them to intracellular organelles, and
FABPs are responsible for this physiological function [2EI4 FABP is a protein consisting of approximately 130
amino acid residues, and nine isoforms have been identified in humans B8l Each of these isoforms is known to

have some specificity in its expression distribution (Table 1). Three of these isoforms, FABP3, FABP5, and FABP7,
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are expressed in the nervous system WEIRILY FABP3, which was first identified in the heart 1112 js abundantly
expressed in mature neurons from the postnatal to the adult stage . In contrast, FABP5 and FABP7 are
maximally expressed in the fetus and neonate, during which time they are expressed in glial and neural stem cells
[9I13]114] FABP3 has a high affinity for n-6 polyunsaturated fatty acids such as arachidonic acid, FABP5 has a high
affinity for saturated fatty acids such as stearic acid and palmitic acid, and FABP7 has a high affinity for n-3
polyunsaturated fatty acids such as DHA [L3JI6I[17],

Polyunsaturated fatty acid itself affects the toxic expression of a-synuclein, the pathogenic protein of Parkinson’s
disease. Previous reports indicate that polyunsaturated fatty acids bind to a-synuclein and promote oligomer
formation (2819120 The exposure of cultured mesencephalic neurons to polyunsaturated fatty acids increased a-
synuclein oligomer levels 29 |n addition, when mice expressing A53T, a representative mutant family line of a-
synuclein in familial Parkinson’s disease, were fed a DHA-containing diet, low concentrations of a-synuclein
suppressed neuronal accumulation and toxic expression. In contrast, high concentrations of DHA increased
intracellular accumulation of soluble and insoluble a-synuclein and neuronal injury (1. In humans, fatty acids have
also been implicated in the pathogenesis of Lewy body disease, and a-synuclein oligomers in the lipid fraction are
detected in autopsy brains of Parkinson’s disease and Lewy body dementia patients but not in healthy subjects 29,
Furthermore, a higher intake of arachidonic acid, an omega-6 polyunsaturated fatty acid, has been suggested to

increase the risk of Parkinson’s disease pathogenesis 22,

Furthermore, FABPs have pathogenic impacts and the potential for predictive biomarkers on various diseases,
including brain injury and neurodegenerative disorders. FABP3 and FABP7 exhibit distinct distribution patterns
within brain tissues, with FABP3 displaying notably higher concentrations in brain injury 23!, Elevated serum levels
of FABP7 were observed in patients with Alzheimer’s disease, Parkinson’s disease, and other cognitive disorders
(241 |n addition, FABP3 expression in the substantia nigra is known to be increased in autopsy brains of Parkinson’s
disease patients [22. In this context, FABP3 co-localizes with phosphorylated a-synuclein in Lewy bodies 28],
Serum FABP3 levels are increased in patients with Parkinson’s disease and dementia with Lewy bodies compared
to healthy controls (27281 |n addition, serum FABP3 was elevated in dementia with Lewy bodies and Parkinson’s
disease with dementia, compared to non-dementia controls 22B%  These clinical findings suggest that FABP3 may
be involved in the pathogenesis of Lewy body diseases, including Parkinson’s disease. Based on these insights,
the following chapters will describe the characteristics of Parkinson’s disease, the selective degeneration of

dopaminergic neurons, and the pathogenic impact of FABPs in the disease.

Table 1. Tissue distribution and expressed cell types of the fatty acid-binding protein (FABP) subfamilies.

FABP . o
Subfamily Tissue Distribution Expressed Cells Ref
FABP1 R [31][3233]
(Liver FABP) Liver, intestine, kidney, pancreas Hepatocytes, enterocytes
FABP2 Intestine Enterocytes [34][35](36]

(Intestinal
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suI;?aBlzily Tissue Distribution Expressed Cells Ref
FABP)
FABP3 ) ) [13][37]38]
(Heart FABP) Heart, skeletal muscle, brain Cardiomyocytes, myocytes, neurons [39][40][41]
FABP4 [42][43][44]
(Adipocyte Adipose tissue, macrophages Adipocytes, macrophages [45]
FABP)
FABPS . . . . . Keratinocytes, adipocytes, glial cells, [L321](26]
(Epidermal Epidermis, brain, adipose tissue [47]48]
neurons
FABP)
FABP6 . 49150150
(lleal FABP) Intestine Enterocytes [52]
FABP7 Brain, eye, kidney, mammary Neural stem cells, oligodendrocytes, (L32904]
(Brain FABP) gland astrocytes, ependymal cells 23141
FABP8 Myelin-forming cells in the . [41][54]
(Myelin FABP) peripheral nervous system Schwann cells, oligodendrocytes
FABPY Testis Salivary gland, mammary gland [551(56]

(Testis FABP)
| 2. Pathology of Parkinson’s Disease and Current Issues

There are over 10 million Parkinson’s disease patients worldwide, accounting for 1-3% of the global population
aged 60 and above BZ. Half of those aged 85 and above develop Parkinson’s disease 8. The evolution of
symptomatic therapies for Parkinson’s disease, including dopamine agonists as well as L-DOPA, has been
remarkable B9, However, a fundamental treatment for Parkinson’s disease has yet to be developed. Initiating
treatment after onset does not lead to a favorable prognosis. At the onset of Parkinson’s disease, the pathogenic
proteins have already accumulated in the brain, and this pathology of dopaminergic neuronal loss induces clinical

symptoms. Therefore, there is an expectation for the establishment of methods to predict the onset early.

Parkinson’s disease was first diagnosed by James Parkinson in 1817, detailing its clinical features as tremor,
rigidity, bradykinesia, gait disturbances, and postural instability 9. Cognitive symptoms commonly emerge in the
advanced stages of the disease [81l. Approximately 20-40% of all Parkinson’s cases develop Parkinson’s disease
dementia, with an average progression time of 10 years. In total, 40% of Parkinson’s patients with severe olfactory
dysfunction progress to dementia (€283 |n this regard, the importance of the olfactory bulb as an entry site for
prion-like transmission in neurodegenerative diseases is suggested [¢4l. Pathologically, Parkinson’s disease is
characterized by the loss of dopamine-biosynthesizing neurons in the substantia nigra pars compacta. It is also
denoted by the abnormal deposition of the pathogenic protein a-synuclein in the cell body and neuronal processes,
forming Lewy bodies and Lewy neurites, respectively B3E8I67  parkinson’'s disease, Parkinson’s disease

dementia, and dementia with Lewy bodies share the accumulation and aggregation of the pathogenic protein a-
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synuclein within neurons, leading to the formation of Lewy bodies. Therefore, these Lewy body diseases are

believed to share common pathological mechanisms.

The decline in motor function observed in Parkinson’s disease arises due to impaired nigrostriatal dopaminergic
function 8], Nigrostriatal dopaminergic projections centrally regulate voluntary movements, and their degeneration
contributes to Parkinsonian clinical symptoms. In addition, the dopaminergic system, originating in the substantia
nigra pars compacta and the ventral tegmental area, predominantly projecting to the striatum and prefrontal
context, significantly influences behavioral activities B9 Consequently, lesions in nigral neurons cause
concurrent dysfunction of agonist and antagonist muscle pairs in animal models of Parkinsonism 22 and sporadic
Parkinson’s disease [3. The dopaminergic function is regulated by the neurotransmitter dopamine. This
catecholamine is biosynthesized from L-tyrosine by the rate-limiting enzyme tyrosine hydroxylase (TH) and
aromatic L-amino acid decarboxylase (AADC) /4. TH requires tetrahydrobiopterin, which is biosynthesized by GTP
cyclohydrolase | (GTPCH1), to perform its enzymatic activity [Z2I[Z81. Because the enzymatic activity of TH protein
strictly controls the rate-limiting step of dopamine biosynthesis 7, unlike those of other dopamine biosynthesizing
enzymes, the expression level and activity of TH, which is precisely regulated via phosphorylation, directly affect

intracellular dopamine amount.

3. Therapeutic Potential of FABP-Targeting Drugs for
Parkinson’s Disease

As previously mentioned, the presence of FABPs is closely related to the maintenance of dopaminergic
homeostasis and mitochondrial function in neurodegeneration. FABP3 and FABP5 are essential for the
neurotoxicity expression of a-synuclein. Considering the potential for drug development targeting FABP3,
researchers observed the absence of a-synuclein neurotoxicity in genetic knockout cells of FABP3. It was found
that FABP3 can bind to o-synuclein in a 1:1 ratio, promoting a-synuclein-FABP3 aggregate formation 8],

Consequently, researchers attempted to create a drug that could inhibit the interaction between FABP3 and a-
synuclein 22189,

The FABPS ligand, as a targeted drug for FABP3, inhibits a-synuclein aggregation and prevents its propagation in
the brain and subsequent neuronal loss Y. The FABP3 ligand effectively prevents the degeneration of
dopaminergic neurons and restores motor dysfunction to a healthy level in a Parkinson’s disease mouse model 29,
Additionally, an a-synuclein mimicking peptide that inhibits the binding and aggregate formation of a-synuclein-
FABP3 is capable of restoring memory and learning abilities in a Parkinson’s disease dementia mouse model 9,
This peptide has the potential to alleviate a-synuclein phosphorylation, which links to neurotoxicity. Researchers
are currently conducting preclinical trials of small molecules targeting FABP3 (Japan Agency for Medical Research
and Development (AMED), Translational Research Program 23ym0126095h0002).

With regard to FABPS5, the specific ligand for FABP5 abolishes a-synuclein accumulation and translocation to
mitochondria, which alleviates neurotoxicity in Parkinson’s disease model neuronal cells 82, as well as ameliorates

oligodendrocyte injury in multiple sclerosis mouse models B3 and psychosine-induced apoptosis in Krabbe disease
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models B4, Furthermore, the FABP5 ligand also has the ability to ameliorate FABP3/5-induced mitochondrial injury,
including lipid peroxidation and BAX-related apoptotic signaling, indicating the potential neuroprotective treatment
for ischemic stroke [2I88] |n addition, regarding FABP7, the ligand alleviates FABP7-induced a-synuclein
oligomerization and aggregation, thereby rescuing glial and oligodendrocytes from cell death in multiple system
atrophy model cells and mice [BZI8I89 These data suggest the promising potential of unique drug developments

targeting FABP to regulate dopaminergic signaling and protect neuronal homeostasis.

4. Diagnostic Potential of FABPs as a Prodromal Biomarker
for Parkinson’s Diseases

In recent years, there has been remarkable progress in targeted therapy for Parkinson’s disease, allowing for the
precise alleviation of clinical symptoms AR However, challenges remain that affect the quality of life for patients,
including subcutaneous device attachment, reduced medication efficacy due to disease progression, and the
presence of OFF symptoms. In neurodegenerative diseases, post-onset treatment does not yield favorable
prognoses, making fundamental treatment challenging. To overcome Parkinson’s disease, it is necessary to predict
disease risk before onset and achieve early therapeutic interventions. Numerous excellent studies have been
reported on diagnostic techniques for Parkinson’s disease using analyses of cerebrospinal fluid (CSF), serum, and
plasma biomarkers targeting a-synuclein and other related proteins [B2I231194195] Additionally, recent studies have
demonstrated that severe olfactory impairment is a useful early biomarker for Parkinson’s disease dementia [62163]
(96][971[98]

Previously, certain reports have suggested methods to predict Parkinson’s disease using FABP3 as a biomarker in
the cerebrospinal fluid or serum [22][30I39][100][101][102][103][104] = These investigations spotlight the pathogenic
significance of the cerebrospinal fluid and serum FABP3 levels, indicating characteristic modifications in
Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Elevated FABP3 levels are
invariably observed in cerebrospinal fluid and serum specimens from patients with these disorders. Notably, higher
FABP3 levels are observed in patients with dementia with Lewy bodies than in Parkinson’s disease dementia and

Alzheimer’s disease, indicating the potential of FABP3 as a biomarker distinctive to dementia with Lewy bodies.

Therefore, with the aim of establishing a more accurate technique using plasma biomarkers to predict disease risk
and discriminate potential disease types, researchers recently focused on FABP family proteins, essential for the
propagation and expression of a-synuclein neurotoxicity, and developed a differential diagnostic technique for
neurodegenerative disorders through a multi-marker analysis in combination with known biomarkers [28l. This
method not only allows the discrimination between healthy individuals and those with Parkinson’s disease but also
enables the prediction of Lewy body dementia, Alzheimer’s disease, and mild cognitive impairment. Specifically,
researchers established a scoring technique that can differentiate Parkinson’s disease, Lewy body dementia, and
Alzheimer’s disease from healthy individuals and also can distinguish between different neurodegenerative
diseases (Figure 1) (28 These multi-marker disease risk scores correlate with clinical symptoms in each disease,

specifically mini-mental state examination (MMSE) scores and Hoehn-Yahr stages in Parkinson’s disease. The
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researchers hope that this technology will contribute to the differentiation of clinically challenging conditions such

as Parkinson’s disease dementia, Lewy body dementia, and Alzheimer’s disease in clinical settings.
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Figure 1. Technique for quantifying risk scores for neurodegenerative diseases using plasma biomarkers. (A) Flow
chart from blood collection to plasma preparation and ELISA analysis. In addition to blood collection at the hospital,
patients or healthy ones can collect their own blood at home. Plasma samples are analyzed using high-sensitivity
immunoassays [28. (B) Representative quantified data of risk scores for mild cognitive impairment (MCI),
Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB) [28. Student’s t-test is

used to compare the means between each group. **** p < 0.0001 versus healthy controls (HC).

In addition to ELISA analysis, metabolomics is a useful tool for measuring biomarkers [103I106] E| |SA analysis of
plasma can measure the amount of a specific protein. This method is considered very accurate and reliable when
the protein to be measured is known. Therefore, understanding the pathogenetic significance of the target proteins
is essential. In contrast, metabolomics analysis, on the other hand, provides a comprehensive measurement of
metabolites in vivo. The advantage of this method is that measurement is possible even if the metabolite to be
measured is unknown. In this respect, compared to ELISA analysis, it may require more advanced techniques to
account for measurement accuracy. Previous metabolomics studies successfully revealed lipid dysregulation in
Parkinson’s disease 19712981 Through utilizing the advantages of both of these approaches and establishing more
accurate and highly specific biomarker predictions, it would be possible to produce a very early diagnosis of

Parkinson’s disease before its onset.
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