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The periosteum, with its outer fibrous and inner cambium layer, lies in a dynamic environment with a niche of pluripotent

stem cells for their reparative needs. The inner cambium layer is rich in mesenchymal progenitors, osteogenic

progenitors, osteoblasts, and fibroblasts in a scant collagen matrix environment. Their role in union and remodeling of

fracture is well known.  From a therapeutic standpoint, the periosteum as a source of tissue engineering has gained much

attraction. 
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1. Introduction

The periosteum is a thin fibrous layer, which forms an outer covering of the bone surface. It contains the outer fibrous

layer and inner cambium layer, which possess significant osteogenic potential . In 1867, Ollier claimed that the

cambium layer is responsible for appositional bone growth . The periosteum lies in a dynamic mechanically loaded

environment and provides a niche for pluripotent stem cells . The outer fibrous layer contains a superficial inelastic

hypocellular layer with high content of the collagenous matrix, which contributes a rich vascular supply to the bone and

skeletal muscle and provides a network of neural fibers, whereas the deep elastic hypocellular hypovascular layer

features a high-collagen matrix, as shown in Figure 1 . The inner cambium layer is hypercellular with mesenchymal

progenitors, osteogenic progenitors, osteoblasts, and fibroblasts in fewer quantities in the collagen matrix . The

cambium layer is rich in vascularity and neural networks. The presence of pericytes in the cambium layer confers the

periosteum with more osteoblastic potential.  The regenerative potential of the periosteum differs with age and bony

location .

Figure 1. Anatomy of periosteum. Created with BioRender.com.

2. Periosteum as MSC Source

The cambium layer of the periosteum contains mesenchymal progenitor cells which can be extrapolated as periosteum-

derived MSCs (P-MSCs) . Various studies have stated that the periosteum is the best cellular therapeutic agent for

bone regeneration due to the multipotent nature at the single-cell level, higher proliferation and differentiation rate, and

retention of differentiation ability in vitro and in vivo . P-MSCs from load-bearing sites possess more osteogenic

potential than flat bones . In cases of fractures, quiescent P-MSCs induce chondrogenesis and osteogenesis, which

helps in long-term integration with native bone .
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3. Characterization and Isolation of P-MSCs

P-MSCs exhibit multilineage differentiation potential both in vitro and in vivo. P-MSCs exert the regenerative potential by

possessing the effects of paracrine signaling, direct cell–cell interactions, and extracellular vehicles . They

possess surface antigens such as MSC markers (CD-73, -90, and -105, MSCA-1, CD-9 and -13, STRO-1, SSEA-4, ScaI,

SOX-2, Oct-4, and Nanog) , integrin markers (CD-29 and -49e) , adhesion molecules (CD-31, -44, -166,

-54, and -146) , and MHC class markers (HLA-ABC) , whereas they lack HSC markers (CD-14, -33, -34, 45, and

-133, and HLA-DR) .

Frey et al. demonstrated the immunohistochemical and molecular characterization of P-MSCs in periosteal tissue samples

. They identified the presence of osteoblasts (ALP, M-CSF, Cbfa-1/Runx2, RANK-L, and Osterix), osteoclasts (TRAP,

CTR, and cathepsin K), chondrocytes (SOX-9), and dendritic cells (MHC-II) in the periosteum. Yang et al. identified

discoidal domain receptor-2 (DDR2), a novel marker for isolating osteoblasts and osteoblast progenitors of the periosteum

. Deveza et al. identified positive markers (Mx1 , ROSA , and Osteocalcin ) and negative markers

(Mx1+Ocn−) of periosteal progenitor cells in mice .

Mx1 and α-smooth muscle actin are potent markers of quiescent skeletal stem cells in adult periosteal tissues . Gao et

al. evaluated the potentialities of periosteal progenitor cells and BM-MSCs using FACS Nestin  PDGFR-α  CD45

Ter119  CD31  LepR  markers. They demonstrated that both Nestin  PDGFR-α  and LepR  periosteal progenitor cells

formed more colony-forming unit fibroblasts (CFU-Fs) than BM-MSCs . Craniofacial-derived periosteal progenitor cells

show a similar growth curve to tibial-derived periosteal progenitor cells. Craniofacial human periosteum-derived cells

(hPDCs) are positive for skeletal stem and progenitor cell markers CD73, CD164, and podoplanin and negative for

CD146, HSC, and endothelial lineage markers .

Olbrich et al. obtained human periosteal samples from the maxilla and mandible bones . Those samples were

subjected to type 9 collagenase for 90 min and were plated onto 75 cm  culture flasks. Periosteal tissues were cultured in

a DMEM/F-12 medium containing antimicrobials. The proliferated periosteal tissues from the fifth to seventh passages

were used for further experiments. Hence, magnetic separation (MACS) is a more suitable separation method to isolate

osteoprogenitors from the entire jaw periosteal cell population.

4. Osteogenicity of P-MSCs

P-MSCs sorted with CD-90  demonstrate higher osteogenic potential than unsorted P-MSCs whether in vitro or in vivo

. Hence, CD-90  sorted P-MSCs represent the ideal cell source with higher osteogenic potential for bone regeneration.

Upregulation of fibroblast growth factor (FGF)-2, -5, and -6 leads to early callus formation and maintains periosteal

osteogenesis . Upregulation of FGFR-1 and -2 was observed in proliferating periosteal mesenchyme . Upregulated

expression of Jag-1 and Notch-2 genes was observed in MSCs of the healing periosteum .

The lineage differentiation potential of MSCs is mainly governed by PPARγ and Runx2 genes. Runx2 is the key regulator

for pro-osteogenesis, whereas PPARγ is responsible for anti-osteoblastogenic effects . Runx-2 and -3 are responsible

for osteogenesis and chondrogenesis of MSCs. Along with Runx-2, TGF-β1, BMP, Wnt, Hedgehog (HH), and (Nel)-like

protein type 1 (NELL-1) activate and regulate osteogenic responses, as shown in Figure 2 and Figure 3 .

Figure 2. Osteogenic and chondrogenic differentiation of periosteal mesenchymal stem cells. Created with

BioRender.com.
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Figure 3. Intracellular signaling of osteogenic and chondrogenic differentiation of periosteal mesenchymal stem cells.

Created with BioRender.com.

A dysfunctional β-catenin pathway results in impaired osteoblastic maturation and mineralization . The Wnt/β-catenin

signaling pathway leads to downregulated osteoclastogenesis and bone resorption . Antagonists of Wnt signaling

molecules such as anti-sclerostin (SOST) and anti-dickkopf-1 enhance MSC-dependent osteogenesis and upregulate

bone mineral density .

Macrophage lineage progenitors recruit P-MSCs for cortical osteogenesis. Colony-stimulating factor knockout results in

dysregulated recruitment of macrophage progenitors, leading to impaired periosteal osteogenesis . TRAP

macrophages induce the expression of periostin and P-MSC recruitment to the periosteal surface through platelet-derived

growth factor-BB (PDGF-BB). In the mice model, cortical bone osteogenesis was exhibited by P-MSC-derived Nestin  and

LepR  CD45  Ter119  CD31  cells. Hence, macrophage lineage progenitors play a significant role in periosteal

homeostasis . The upregulation of periostin by PDGF-BB was induced by PDGFR-β, PI3K, AKT, and CREB

phosphorylation . Periostin, along with autophosphorylated PDGFR-β, regulates and maintains periosteal

osteogenesis .

Intraosseous 5 μg BMP-2 injection in a mouse model of osteogenesis imperfecta resulted in periosteal ossification and

enhanced biomechanical strength and thickness of cortical bone . Endosteal and periosteal osteogenesis was

ascertained in chronic ovariectomized female cynomolgus monkeys with an intraosseous injection of recombinant BMP-2

loaded into calcium phosphate matrix into the femoral neck . In a mouse model of spondyloarthropathy, IL-17A

deficiency attenuated inflammatory cytokines and bony erosions and promoted periosteal osteogenesis . IL-17A

inhibited osteoblastic differentiation in inflammatory periosteum by inducing Wnt antagonist secreted frizzled-related

protein (sFRP)-1 and suppressing sFRP-3 expression . Beta tricalcium phosphate block induced periosteal

osteogenesis and acted as a space maker in the soft tissue defect .

5. Engineered Osteogenesis by P-MSCs

The key challenge in tissue engineering is the formation of new blood vessels (neovasculogenesis) at the transplanted

site. Van Gastel et al. observed increased proangiogenic potential when murine P-MSCs were cotransplanted with a

collagen calcium phosphate scaffold and endothelial cells in vivo . As a result, they exhibited pericyte-like cells which

induced hematopoietic stroma with neovasculogenesis . Zheng et al. observed enhanced osteogenesis in the form of

increased expression of osteocalcin, osteonectin, and type 1 collagen in 3D culture when P-MSCs were loaded onto a

poly(lactic-co-glycolic acid) scaffold with allogenic serum . Enzymatically harvested and culture-expanded periosteal

cells from human rib periosteum exhibited in vitro osteogenesis and chondrogenesis .

6. Chondrogenicity of P-MSCs

Ito et al. studied the chondrocyte precursors in the periosteum, and their observations were as follows: (a) the cambium

layer of the periosteum caters to chondrocyte precursors, (b) appositional neochondrogenesis displaces the fibrous layer

away from already formed cartilaginous tissue, and (c) chondrogenesis commences from the juxtaosseous to juxtafibrous

region of the cambium layer .

Periosteal progenitors possess chondrogenic potential in the presence of chondrogenic-dependent transcriptional factors

and signaling pathways. In the presence of TGF-β3, periosteal progenitors differentiate into chondrocytes along with

atelocollagen, which was further evaluated by immunohistochemical staining for type 2 collagen .
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7. Engineered Chondrogenesis of P-MSCs

Various studies have emphasized that the periosteum predominantly gives rise to chondrocytes . Brittberg et al.

demonstrated that the periosteum possessed a higher degree of clonogenicity when chondrocytes were cocultured with

periosteal cells and agarose . Such cocultured chondrocytes expressed higher levels of IL-6 and -8, TGF-β3, and GM-

CSF. They concluded that TGF-β3 can promote periosteal chondrogenesis. P-MSC chondrogenesis and MSC

differentiation were observed when TGF-β3 was injected subperiosteally . Periosteal cells from adults and the

elderly population retain proliferation and multilineage differentiation capacity. Subperiosteal injection of TGF-β1 and IGF-

1 increased the cellular count and phenotypic stability in the cambium layer of periosteum in aged rabbits, as well as in

vitro cartilage regeneration . In vitro cultured rabbit periosteal explants exhibited chondrogenic potential when exposed

to TGF-β1 . Cultured chondrocytes showed increased expression of type 2 collagen.

Digoxin and ATP increase collagen content in neocartilage by around 110%. The tensile strength of newly formed

cartilage was increased by digoxin (280%) and ATP (180%). Digoxin and ATP increased Ca  oscillations in monolayer

cultured chondrocytes. Hence, calcium modulators enhance neochondrogenesis . Evidence has shown that the

supplementation of ECM materials such as COMP and aggrecan in a biogel formulation (low-melting-point agarose)

mimicked the composition of the cartilage tissue when injected in between bone and the periosteum of the superomedial

aspect of rabbit tibia. Regenerated subperiosteal chondrogenic tissue was analyzed for glycosaminoglycan and DNA

content, as well as ALP activity. ALP activity was grossly decreased with an increase in GAG and DNA content in

regenerated cartilage. This model created a suppressive environment for the chondrocyte hypertrophy niche with

chondrogenic progenitors for cartilage tissue engineering in in vitro bioreactors . Hence, this milieu provides a broad-

based platform for cartilage grafting in cartilage defects.
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