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Contactless structural monitoring has in recent years seen a growing number of applications in civil engineering. Indeed,

the elimination of physical installations of sensors is very attractive, especially for structures that might not be easily or

safely accessible, yet requiring the experimental evaluation of their conditions, for example following extreme events such

as strong earthquakes, explosions, and floods. Among contactless technologies, vision-based monitoring is possibly the

solution that has attracted most of the interest of civil engineers, given that the advantages of contactless monitoring can

be potentially obtained thorough simple and low-cost consumer-grade instrumentations.
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1. Brief Overview of Vision-Based Monitoring Systems

1.1. Monitoring Process

A vision-based system could consist of a set of video cameras connected to a computer installed with software having

real-time processing capacity of the acquired images, or could be made by a set of video cameras whose recordings are

only acquired during monitoring and later processed. Depending on the distance between the cameras and the structure

to be monitored, appropriate lenses must be selected to obtain images with adequate resolution, indispensable to track

the motion of the selected targets with sufficient accuracy, e.g., . Lighting lamps could be added for conducting

measurements in positions with scarce illumination or even at night.

The monitoring process roughly consists of the following phases: (1) installation, i.e., the video cameras equipped with the

selected lenses are placed on tripods in the most convenient locations, connected to the computer and synchronized; for

each video camera the targets to be tracked are set (depending on post-processing procedures, they could be, for

example, applied markers or existing textures in the structure surface); (2) calibration, i.e., the relationship between the

pixel coordinates and the physical coordinates is obtained, usually based on known physical dimension on the object

surface and its corresponding image dimension in pixels; and (3) video acquisition and processing, i.e., the videos are

recorded and the motion of each target is tracked in the image sequences; as a result, the displacement time history is

given as output. A schematic representation of this simple flowchart is depicted in Figure 1, with the sources of errors and

uncertainties discussed in the following paragraph.

Figure 1. Diagram of the vision-based monitoring and relations with the sources of errors and uncertainties.
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1.2. Errors and Uncertainties

Differently from other measurement approaches where the accuracy of the employed sensors/systems is provided by their

manufacturers and generally remains stable within assigned operational conditions during a given calibration time span,

the accuracy of vision-based systems cannot be related solely to the technical specifications of the video cameras. The

accuracy determination in vision-based monitoring is a rather complex problem as it depends on a multifaceted

combination and interaction of different parameters. The sources of errors and uncertainties in vision-based monitoring

can be subdivided in three groups: (1) intrinsic to the monitoring hardware, e.g., optical distortions and aberrations in the

lenses, limitations in the resolution, and performance of the sensor of the video camera; (2) relevant to the software and

calibration/synchronization process, e.g., limitations in the motion tracking algorithm, synchronization lags among

cameras, and round-offs in camera calibration; and (3) environmental, e.g., influence of the location where the camera is

installed, vibrations induced in the camera-tripod system, variable ambient light, and non-uniform air refraction due to

variable temperatures between installed cameras and the structure being monitored. These sources inevitably influence

each other, for example, the resolution of the hardware influences the precision that can be achieved in the calibration,

which is in turn influenced by the environmental conditions. The scheme depicted in Figure 1 summarizes the possible

interactions between the three phases of the vision-based monitoring process and the sources of errors and uncertainties.

Investment can be made in the hardware (high quality cameras and lenses), in up-to-date software, in efforts to access

the most favorable locations for camera installation, and in accurate controls of the calibration and synchronization.

Nevertheless, the variability of the environmental parameters might still jeopardize the quality of the results; this is a

concern especially for long-term field monitoring as required in structural health monitoring, which faces large variations in

ambient light, temperature, humidity, wind, and other possible interferences inducing vibrations in the cameras. As a

consequence, these sources of errors and uncertainties have a larger impact on vision-based monitoring as compared to

the case of conventional monitoring procedures when sensors are in direct contact with the object being monitored.

2. Recent Field Applications of Vision-Based Vibration Monitoring in Civil
Engineering

2.1. General Overview

Many published works presenting applications of vision-based monitoring in civil engineering can be found in the technical

literature. Contributions (only refereed journal articles are here considered) can be organized in three areas of monitoring

applications: (1) measurements of displacements and strains under static and quasi-static loadings 

; (2) measurements of displacement time histories in prototypes or small-scale

structures in controlled environmental conditions, typically in a laboratory, 

; (3) field measurements of displacement time histories in full scale structures

; (4)

development of sensors using vision-based techniques ; and (5) field measurements of moving

components, as in the case of wind turbines, e.g., . Such a subdivision is made regardless of the adopted

vision-based techniques and image processing algorithms. It should be remarked that overlaps exist between these

monitoring applications, as in some cases, there are publications that, prior to field testing, illustrate preliminary laboratory

validations. Hence, the proposed subdivision should be considered on the basis of the main contribution provided.

Attention in this review article is given to the analysis of recent results obtained in vibration (displacement time histories)

monitoring of civil engineering structures and infrastructures in the field, as documented in refereed journal articles

published in the last four years . The results presented are subdivided

into six structural groups: steel bridges, steel footbridges, steel structures for sport stadiums, reinforced concrete

structures, masonry structures, and timber footbridge. For each field study, a short description of the monitored structure

is provided, with a summary of the main information and conclusions provided in the publication. A list of the considered

applications is reported in Table 1; it is observed that half of them are in the U.S.A. and that bridges/footbridges are the

most recurring structures.

Table 1. Recent field applications of vision-based vibration monitoring in civil engineering.
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Group Structure Country Authors and Reference

Steel bridges

Suspension bridge U.S.A. Feng and Feng 

Truss with vertical lift U.S.A. Chen et al. 

Skew girder U.K. Xu et al. 

Steel footbridges

Cable-stayed bridge U.K. Xu et al. 

Suspension bridge North Ireland Lydon et al. 

Suspension bridge U.S.A. Hoskere et al. 

Vertical truss frames U.S.A. Dong et al. 

Steel structures for sport stadiums
Grandstands U.S.A. Khuc and Catbas 

Superstructure cables U.S.A. Feng et al. 

Reinforced concrete structures

Deck on arch footbridge U.S.A. Shariati and Schumacher 

Five-story building U.S.A. Harvey and Elisha 

Beam-slab bridge North Ireland Lydon et al. 

Masonry structures

Heritage ruins and arch bridge Italy Fioriti et al. 

Arch bridge U.K. Acikgoz et al. 

Arch bridge Australia Dhanasekar et al. 

Timber footbridge Deck-stiffened arch Greece Fradelos et al. 

For each reference, some essential information on the adopted hardware is provided in  Table 2, alongside video

processing (optical flow, template matching, feature matching, motion magnification, and proprietary commercial

software), loading condition during monitoring, as well as comparisons with monitoring using other technologies. In this

way, Table 1 and Table 2 are supposed to serve as a guide to the following paragraphs, each dedicated to one of the six

structural groups, presented in the same order used in the tables.

Table 2.  Essential information on adopted hardware, video processing, loading conditions during monitoring, and

comparison with other monitoring technologies.

Reference Camera, Pixel Resolution,
and Frame Rate (FPS)

Video Processing
Algorithm

Loading Condition
during Monitoring

Comparisons with Other
Monitoring Technologies

Point Grey, 1280 × 1024, 10 Template mat. Passage of subway
trains No direct, GPS, and radar

Point Grey, 800 × 600, 30 Optical flow Lift impact, normal
traffic Accelerom., strain gauges

Go Pro, 1920 × 1080, 25
Imetrum, 2048 × 1088, 30

Template mat.
Imetrum Passage of trains Low cost and high-end vision-

based, accelerometers

Go Pro, 1920 × 1080, 30 Template mat. Crowd of pedestrians Wireless accelerometers

Go Pro, 1920 × 1080, 25 Template mat. Crowd of pedestrians Accelerometers

DJI 3840 × 2160, 30 Optical flow Walk, running, jumping Accelerometers

Low cost, 1920 × 1080, 60 Feature mat. Walk, running, jumping Accelerometers

Canon, N/A, 30 and 60 Feature mat. Crowd during game Accelerom., displ. transd.

Point Grey, 1280 × 1024, 50 Template mat. Operational, shaken Load cell

Canon, N/A, 60 Motion magn. Pedestrian jumping No direct, vision-based

N/A, 1056 × 720, 25 Feature mat. Outdoor shake table Accelerometers

Go Pro, 1920 × 1080, 25 Template mat. Normal vehicular traffic No direct, integr. fiber optics

N/A Motion magn. Tram vibrations, wind Velocimeters
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Reference Camera, Pixel Resolution,
and Frame Rate (FPS)

Video Processing
Algorithm

Loading Condition
during Monitoring

Comparisons with Other
Monitoring Technologies

Imetrum, N/A, 50 Imetrum Passage of trains Fiber optics

Sony, 1936 × 1216, 50 Dantec Passage of trains No direct, numerical

Low cost, 1920 × 1080, 30 Optical flow Group of pedestrians Accelerom., GPS, theodolite

It is anticipated that comparisons in all cases provided good correlations between vision-based monitoring and the other

considered technologies, with one exception being the steel footbridge (vertical truss frames) tested by Dong et al. ,

where differences between accelerometers and vision-based measurements were not negligible. It should be remarked

that, in four cases, no direct comparisons were made: Shariati and Schumacher , as well as Feng and Feng ,

compared the magnitudes of the measurements to those obtained in previous tests, concluding that such comparisons

were favorable; in Dhanasekar et al. , the outcomes of the experimental monitoring were satisfactory compared with

numerical simulations in terms of magnitude of the monitored structural parameters; and in Lydon et al. , vision-based

monitoring was part of an integrated monitoring system that included fiber optics with the objectives to complement the

two systems.

2.2. Steel Bridges

Feng and Feng  presented the outcomes of vision-based field monitoring of the Manhattan Bridge (New York, NY, USA)

using a single camera for remote real-time displacement measurements at one single point and simultaneously at multiple

points. The Manhattan Bridge, opened to traffic in 1909, is a suspension bridge spanning the East River in New York City,

connecting Manhattan and Brooklyn; the main span is 448 m long; the deck is 36.5 m wide, including seven lanes in total

and four subway lanes. The camera was placed on stable stone steps around 300 m away from the bridge mid-span and

the video recording was made using a frame rate of 10 FPS. The known dimensions (7.2 m) of the vertical trusses were

used for camera calibration. Displacement responses at one single point at the mid-span region were measured during

the passage of subway trains, having estimated the scale factor as 20.5 mm/pixel. The authors commented that the

dynamic displacement response was similar to that measured by GPS and interferometric radar systems in previous

studies. Then, by zooming out the lens to obtain a large field of view (FOV), i.e., the area that is visible in the image, three

points at the mid-span region were selected and a scaling factor of about 36 mm/pixel was estimated. The authors

commented that such measures displayed more fluctuations, especially for small displacement amplitudes, as a

consequence of the larger FOV, determining a decreased measurement resolution compared with the single point case. In

addition, the authors studied the influence of the camera vibration during the field measurements. Such a test was

conducted by looking at a building in the background and tracking its apparent motion; the camera motion was estimated

with the assumption that the building was not moving. The authors concluded that, compared with the bridge

displacement, the camera motion was insignificant.

2.3. Steel Footbridges

Xu et al.   illustrated the activities for field vision-based monitoring of the Baker Bridge, a cable-stayed footbridge

spanning 109 m over the A379 dual-carriageway in Exeter (UK). The bridge provides cyclist and pedestrian access to the

Sandy Park Stadium and experiences heavy pedestrian traffic on match days. The bridge comprises a single A-shaped

tower that supports the continuous steel deck over a simple support at the pylon cross-beam and via seven pairs of stay

cables. Because of the range of frequencies of its first vibration modes, the bridge is prone to noticeable vibration

response owing to pedestrian traffic. A consumer-grade camera was mounted on the top of a tripod at the central

reservation of the A379 carriageway below and approximately 55.30 m from the bridge tower. Video recording was done

at 30 FPS. Camera calibration was set using the known structural dimensions from the as-built drawings, using a narrow

FOV setting. Four triaxial wireless accelerometers were installed in the bridge deck to validate the results obtained from

processing the images acquired by the video camera. The monitoring of the bridge included periods when large crowds of

spectators crossed the deck. The results in terms of identified modal frequencies of the bridge deck as obtained from

vision-based monitoring accurately matched those obtained for the contact accelerometers. In addition, measurements of

cable vibration using the vision-based system were performed and compared to the results from two triaxial wireless

accelerometers installed on the cables. The authors concluded that the vision-based system works better to capture the

lower modal frequencies of cables, whereas the accelerometers provide reliable estimations of higher frequency modes.

However, the multipoint deformation data obtained using the vision system proved to be effective for tracking cable

dynamic properties at the same time as bridge deformation, allowing for the effect of varying load on cable tensions to be

observed. In this way, a powerful diagnostic capability for larger cable-supported structures was achieved.
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2.4. Steel Structures for Sport Stadiums

Khuc and Catbas  illustrated a campaign of field vision-based monitoring of the steel superstructures of a football

stadium in the USA with approximately 45,000 seating capacity that exhibited considerable vibration levels, especially at

the sections of the highly active local team supporters. The vision-based method and framework as implemented by the

authors was verified under different experimental conditions including altering light conditions, different camera locations

(distances and angles), and camera frame rates (30 and 60 FPS). Specifically, a beam under the grandstand was

selected for monitoring predetermined measurement points. A displacement potentiometer and an accelerometer were

installed for comparative purposes. The contact sensors and camera recorded the structural vibrations synchronously

during periods of intense crowd motion throughout football games. The authors concluded that the results from vision-

based measurements were consistent with those from contact measurements and the first three operational modal

frequencies under a human jumping load were almost the same. In addition, the authors commented that, although quite

accurate results for defined measurement ranges and conditions could be achieved through a completely non-contact

vision-based implementation with low-cost hardware, some issues such as data storage requirement for clips and images,

processing time for image data, and limitation for horizontal displacement measurement needed to be addressed in future

developments.

2.5. Reinforced Concrete Structures

Shariati and Schumacher  documented the field vision-based monitoring of the Streicker Bridge, a footbridge in the

Princeton University campus (New Jersey, USA) with a straight main deck section supported by a steel truss system

underneath and four curved ramps leading up to the straight sections. Structurally, the main span is a deck-stiffened arch

and the legs are curved continuous girders supported by steel columns. The legs are horizontally curved and the shape of

the main span follows this curvature. The arch and columns are weathering steel, while the main deck and legs are made

of reinforced post-tensioned concrete. A consumer-grade camera with a zoom lens was used to acquire a 60 FPS video of

one of the ramps while a number of volunteers jumped up and down on it. A target mounted on the edge of the bridge slab

was used to track displacement time histories. Such a target was set up by a research team from Columbia University that

also investigated the same footbridge with their own video-based monitoring system  a few years earlier. In addition,

the Streicker Bridge was equipped with two fiber-optic sensing technologies, i.e., discrete long-gauge sensing, based on

fiber Bragg-Gratings, and truly-distributed sensing, based on Brillouin optical time domain analysis; both sensors were

embedded in concrete during the construction. The natural frequencies obtained by the authors in their tests were found

to be the same as those measured by the fiber-optic measurement system and by the other vision-based method in . In

addition to the frequency contents, the two vision-based measurements gave comparable amplitude of displacements,

showing the replicability of the obtained results.

2.6. Masonry Structures

Fioriti et al.  presented monitoring of two cultural heritage constructions in Italy, i.e., the temple of Minerva Medica, a

ruined nymphaeum of the ancient Imperial Rome, and Ponte delle Torri in Spoleto, an aqueduct and pedestrian bridge

with multiple arches having a total length of 230 m and piers of height up to 80 m, completed in the Middle Ages and

possibly built over Roman ruins. The Minerva Medica ruins are very close to a tramway producing strong vibrations whose

effects were clearly evident in the video taken using a low-cost consumer grade camera at a distance of 9 m. Modal

analysis by motion magnification of the field video recordings was performed and compared to the results obtained

through conventional contact velocimeters; the differences were limited to just a few percentage points. Satisfactory

results were also achieved for the Ponte delle Torri, despite the small level of structural excitation due to the wind action

and the low resolution of the adopted video cameras. The authors commented that such results constituted a remarkable

starting point for future experimentations and improvements. Indeed, monitoring the ambient vibration of a massive

multiple-arch masonry structure under normal conditions through vision-based monitoring appears to be a major

successful case study, considering the oppositions often found in installing contact sensors in cultural heritage.

2.7. Timber Footbridge

Fradelos et al.   illustrated the field vision-based monitoring of the Kanellopoulos timber arch footbridge (Patras,

Greece), 30 m long and 2.9 m wide, made of glulam wood and metallic elements. The omission of X-bracing below the

deck and poor construction of the metal X-bracing at its roof made the footbridge prone to lateral oscillations. The bridge

was monitored using satellite systems, robotic theodolites, and accelerometers. Videos were made during testing using

common low-cost cameras without the initial intention for vision-based monitoring. Such video recordings were later

examined and used to try to estimate the dynamic horizontal deflections of specific points of the footbridge. It was shown

that the analysis of low-cost video images using a simple approximate technique permitted the reconstruction of the
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movements of the bridge and the computation of some of its structural characteristics. This result was possible under

ideal conditions: the movement was two-dimensional, displacements of the selected target points were characterized by a

signal exceeding the pixel resolution, the camera was in a fixed position and the video image covered stable points

defining a reference system, and structural elements near the selected target points allowed to scale the photo in the two

examined axes. As a result, the first lateral natural frequency of the footbridge obtained from video processing differed by

less than 2% from that estimated using accelerometers and geodetic sensors.
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