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 Quantitative parameters of FDG-PET, such as SUV and TLG have been used to evaluate therapeutic response.

Recent advancement in anti-cancer therapeutics showed that tumor response to molecular-targeted drugs and

immune-checkpoint inhibitors is different from conventional chemotherapy in terms of temporal metabolic alteration

and morphological change after the course of effective therapy. Metabolic changes and temporal enlargement due

to immune cell infiltration seen after immune-checkpoint inhibitors, such as anti-programmed cell death-1 (PD-1)

and anti-programmed cell death ligand 1 (PD-L1) antibodies facilitated the modification of conventional Response

Evaluation Criteria in Solid Tumor and FDG-PET response evaluation criteria. Tumor microenvironment including

cancer stem cells (CSCs) that is thought to be a root cause of tumor heterogeneity; is considered a target of novel

and effective therapy. 

 Accumulation of FDG reflects glucose metabolism of both cancer cells and immunologically competent cells in the

tumor microenvironment. Immunological reaction to the therapy differs among patients according to the individual

immune function. Considering the heterogeneity of tumor tissue and individual variation in tumor response to

immunotherapy, radiomics approach combines quantitative image features with deep learning algorithm have the

potentials to improve response assessment in more personalized treatment. 

 Stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)-targeted α-particle therapy has

been introduced, because SDF-1/CXCR4 axis is known to increase epithelial-mesenchymal transition to facilitate

invasion and metastasis, and regulate immune response by accelerating T cell proliferation as well as PD-1 and

PD-L1 expression in cancer cells and cytotoxic T lymphocytes, respectively. Prominent energy profile and

biological effect of α-particles are promising as an alternative in targeted radionuclide therapy (TRT). Radiation

dosimetry according to the theranostics approach will permit accurate TRT and artificial intelligence-based

treatment decision making and precise response evaluation would be a precision nuclear medicine in the future.

FDG-PET/CT  cancer stem cell  tumor microenvironment  immunotherapy

therapeutic evaluation  artificial intelligence  radiomics  theranostics

1. Introduction

Positron emission tomography (PET) has become an indispensable procedure for the initial assessment and post-

therapeutic evaluation in clinical oncology, using dedicated radiopharmaceuticals targeting cellular metabolism and

tumor-specific receptors . PET as a means of molecular-based imaging is able to characterize biological

processes associated with disease progression and therapeutic response quantitatively at the cellular and
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molecular levels. The outcome of a therapy cannot be interpreted properly without a surrogate biomarker to assess

the efficacy of every therapeutic modality.

Therapeutic response is objectively evaluable by means of imaging. Conventional response evaluation criteria use

morphological parameters; on the other hand, 2-[ F] fluoro-2-deoxy-d-glucose (FDG)-PET-based criteria use

metabolic parameters. Histological response to anti-cancer therapy depends on the therapeutic modalities; cancer

immunotherapy shows the distinctive phenomenon of immune-related tumor responses. Emerging observational

data of immune-related response patterns have determined modification of the conventional response criteria. The

current approaches to anti-cancer therapy target the tumor microenvironment as well as anti-tumor immunity.

2. Glucose Metabolism of Cancer and FDG-PET

It has been appreciated for nearly 100 years that cancer cells are metabolically distinct from other cells. All cells

fundamentally require nutrients to meet metabolic demands for energy generation and biosynthesis. Metabolic

demands of cell proliferation, differentiation, and biosynthesis of proteins, lipids, and nucleotides are different in

tumor cells.

Elevated glucose uptake and cellular metabolism were thought to be the biochemical characteristics of cancer .

FDG-PET could disclose a high glycolytic rate and pyruvate oxidation in the mitochondria, depending on the cell

proliferation. These altered metabolisms, including metabolic switch from aerobic to anaerobic glycolysis, are

known as the Warburg effect . The function of the Warburg effect has been simply understood as a metabolic

switch, but a breakthrough to explain the Warburg effect regarding cancer metabolism in vivo has taken place

recently .

Tumor hypoxia is known to be the most important factor to account for biological aggressiveness and resistance to

chemotherapy and radiotherapy through the expression of multidrug resistance 1 (MDR1) and cell cycle arrest .

Accelerated proliferation and metabolism of cancer cells lead to an imbalance in the form of insufficient oxygen

supply in relation to oxygen demand in solid tumors . Anti-neoplastic drugs and ionizing radiation have effects

on oxygen to generate reactive oxygen species (ROS) in cancer cells, causing oxidative stress, which results in

apoptosis. However, cancer cells can survive in the hypoxic area, which is usually seen at 100 μm from tumor

vessels, because of the decreased generation of ROS . In the area of hypoxia, a transcription factor, hypoxia-

inducible factor 1 (HIF-1), is activated to induce the expression of various genes responsible for adaption to

hypoxic metabolism from oxidative phosphorylation to glycolytic ATP production, explained by the Warburg effect,

as mentioned above , invasion and metastases of cancer cells through the formation of pre-metabolic niche

and epithelial–mesenchymal transition (EMT) to escape from hypoxia , increased erythropoiesis through

upregulation of erythropoietin, and angiogenesis to reoxygenation of hypoxic area . An α-subunit of HIF-1 (HIF-

1α) induces expression of glucose transporter 1 and glycolytic enzymes to increase glucose uptake and anaerobic

glycolysis to compensate for ATP production . FDG-PET can therefore evaluate tumor aggressiveness and

resistance to chemotherapy and radiotherapy by detecting increased glucose metabolism and is a possible

therapeutic marker to monitor responses.
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3. Machine Learning for Imaging Cancer Heterogeneity and
Interpretation

Figure 1 shows FDG-PET/CT images of a patient with NSCLC. Two foci of increased nodular FDG uptake are seen

in the upper lobe of the right lung and the upper mediastinum on the left side. These lesions show SUVmax of 7.2

and 4.8, respectively. Do these images provide the radiologist with sufficient information for correct interpretation?

Radiologists cannot diagnose correctly without additional information about clinical history, because every

radiologist knows that the most common sites of metastasis of lung cancer are ipsilateral hilar and mediastinal

lymph nodes and that metastasis to the contralateral mediastinal lymph node usually occurs after ipsilateral

mediastinal lymph nodes metastases . Information about past history of left lung cancer with T3N1M0, stage

IIIA, for which left upper lobe segmentectomy and lymph node dissection was performed 2 years before, is a clue

for correct diagnosis. The patient had undergone surgery followed by chemotherapy on the basis of correct

diagnosis. How accurately can FDG-PET images estimate the efficacy of chemotherapy and prognosis of this

patient? Do quantitative parameters help to predict response to chemotherapy and prognosis?

Figure 1. 2-[ F] fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) of

patients with non-small cell lung cancer. (a) Maximum intense projection image shows abnormal FDG uptake in the

left upper mediastinum (arrow) and the right lung (arrowhead). (b) PET/CT shows increased FDG uptake in the

[20]
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lymph node adjacent to the left subclavian artery at the level of the upper mediastinum (arrow). (c) High FDG

uptake is seen in the nodule at the right upper lobe (arrow head).

Considering the heterogeneity of tumor tissue, more sophisticated indexes surpassing SUV and other parameters

as well as diagnostic algorithms are needed to accurately classify the tumor on the basis of biological malignancy,

effectiveness of various types of therapy, and prognosis of patients. Recent advancements in computer science

and artificial intelligence (AI) have shown the possibility for machine learning systems to take on the practice of

radiology, which was previously thought to be limited to human radiologists. AI including machine learning

technologies has the potential to transform radiological imaging by using the vast amount of clinical data including

pathologic and genetic examinations to automate the integrated diagnostic radiology workflow and diagnosis.

Machine learning algorithms, such as random forests, support vector machines, and artificial neural networks, have

been used for classification of images by training with input data set and knowledge, and then the best model is

applied for the prediction of pathophysiology. Due to deep learning and convolutional neural networks (CNN), the

capability to learn and master given tasks to perform computer-aided diagnosis (CAD) has made remarkable

advances in clinical radiology in the past decade . Wang et al. have suggested that the performance of CNN

from FDG PET/CT images is comparable to the best classical machine learning and human radiologists and that

CNN is more convenient and objective than the classical methods, because it does not need tumor segmentation,

feature selection, or texture features for classifying mediastinal lymph node metastasis in patients with NSCLC .

They also suggested that the performance of the CNN would be improved by incorporating diagnostic features like

SUV and tumor size . For example, in mediastinal lymph node metastasis in patients with NSCLC, accurate

diagnosis is a challenge, as indicated in Figure 1; however, lymph node metastasis evaluated by FDG uptake has

been reported to be prognostic as compared with pathological lymph node metastasis . Therefore, diagnosis of

lymph node status during diagnostic work up is of the utmost importance.

Machine learning is already being applied in the practice of radiology, including in the field of mammography. There

have been many papers describing a performance level in lesion detection similar to that of experienced

radiologists . CAD was approved by the Food and Drug Administration (FDA) and has been used for

mammography in radiology practices ; however, improvement of the diagnostic ability has not been satisfactory,

and the majority of radiologists have rarely changed their reports as a result of findings generated by CAD 

. Machine learning has been reported to be unlikely to replace radiologists but will provide quantitative tools to

increase the value of imaging as a biomarker including therapeutic response evaluation . Recently, radiology

professionals have reminded that AI algorithms must be as safe and effective as the physician by rigorous testing,

longitudinal surveillance, and investigation of oversight mechanisms to ensure generalizability across patients as

well as variable imaging and imaging protocols . However, radiologists cannot disregard autonomous radiology

AI, because AI can tirelessly improve the image reading capacity and may drastically acquire interpretation

capabilities if AI can incorporate available medical information and contextual integration of data that would

typically be identified during physician interpretation in order to render a medical judgement.

On the basis of considering tumor heterogeneity, texture analysis has been explored, especially in the field of

nuclear medicine . The most exciting part of machine learning in medical imaging would be to extract
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patterns that are beyond human perception and classification due to the application of deep learning for diagnostic

algorithms . Radiologists should seek to work alongside AI in the future.

4. Response Evaluation of Novel Therapeutics with
Molecular Imaging

Malignant cells survive in a complex balance in the immune system. Both CTLA-4 and PD-1 suppress T cell

activities. Therefore, agents that block CTLA-4, PD-1, and PD-L1 are able to produce an anti-tumor response

through immune activation. Inhibition of CXCR4 exaggerates the anti-tumor immune response and CXCR4-

targeted therapy is a possible therapeutic option to eradicate CSCs. Recent studies have indicated that dual

blockade of PD-1–PD-L1 and CXCL-12–CXCR4 pathways reduces specific cellular and functional elements within

the immunosuppressive tumor microenvironment and augments tumor-specific cell-mediated immune responses.

The complexity of these interactions and heterogeneity of immune cells in the tumor microenvironment are

challenges in the development and the evaluation of the therapeutic efficacy of new immune therapies in vivo.

Imaging of immune cells that are major players in anti-cancer therapy is challenging because many subtypes of

cells exist and play different roles in the tumor microenvironment.

Non-invasive evaluation procedures for therapy outcomes, such as biomarkers and molecular imaging, are

expected to represent precise strategies of cancer therapy. FDG-PET can play an important role in fulfilling this

purpose, as mentioned earlier . Uptake of FDG reflects the viability of cancer cells and all other players of

the immune system in the microenvironment. No uptake of FDG means complete remission of the tumor; however,

increased uptake does not always indicate progression of the tumor, because of the pseudoprogression

phenomenon and increased anaerobic glycolysis in the therapy-induced hypoxia, as mentioned above .

Cancer cell-specific imaging has the potential to evaluate quantitatively the residual cancer cells that had been able

to evade anti-cancer agent of immune response. However, phenotypic changes due to genetic alteration, such as

therapy resistant mutation and de novo mutation after therapy, may decrease specificity to the specific imaging

agent. Metabolism-based PET tracers other than FDG can be used to evaluate therapeutic efficacy .

However, metabolic diversity and instability, especially those acquired on the progression course or after therapy,

of cancer cells would be sources of inaccuracy in evaluating the response.

Prediction and evaluation of therapeutic efficacy would be possible with a tumor-specific PET tracer. Prostate-

specific membrane antigen (PSMA) ligand labeled with gallium-68 ( Ga-PSMA) is a PET tracer used to determine

the eligibility for PSMA-targeted radionuclide therapy with Lu-PSMA or Ac-PSMA (Table 1). Peptide receptor

radionuclide therapy for neuroendocrine carcinoma with Y- and Lu-dodecane-tetraacetic acid-Tyr -octreotate

(DOTA-TATE) is another radionuclide therapy performed successfully for solid tumors. Ga-DOTA-TATE is a

diagnostic counterpart of therapeutics. These examples are representative theranostics in nuclear medicine

practice that will be followed by the future radionuclide therapy. A major role of specific imaging in the theranostics

is to confirm the indication of therapy. Another role would be dosimetry analysis to determine the therapeutic dose

by calculating absorbed doses in the tumor for efficacy and target organs for toxicity. It may be possible for PET

imaging with specific tracers to evaluate therapeutic efficacy by measuring the amount of target molecules;
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however, the expression of the target molecules may change after the therapy—then, accurate response

evaluation would be difficult with these target-specific PET studies.

Table 1. Representative Pair of Radiopharmaceuticals for Theranostics.

Radiopharmaceutical for
Therapy Radiation Half-

Life
Radiopharmaceutical for

Diagnosis

Lu-DOTA-TATE Beta ray (β  particle) 78 h Ga-DOTA-TATE

Bi-DOTA-TOC
Alpha ray (He

particle)
0.76

h
Ga-DOTA-TOC

Lu-PSMA Beta ray (β  particle) 78 h Ga-PSMA

Ac-PSMA
Alpha ray (He

particle)
10 d Ga-PSMA

DOTA-TATE: dodecane-tetraacetic acid-Tyr -octreotate; DOTA-TOC: dodecane-tetraacetic acid-D-Phe -Tyr -

octreotide; PSMA: prostate-specific membrane antigen.

Considering the present availability and required standardization, FDG-PET may be favorable for response

evaluation in solid tumors. Since there is a variety of therapeutics that have effects on both cancer cells and the

immune system, individualized evaluation criteria based on therapeutic agents and clinicopathologic information

may be appropriate. Clinicopathologic data include therapeutic regimen and time from administration, immune

function status, temporal changes in size and attenuation of tumor on CT, and pathological parameters, such as

proliferation, invasion, differentiation, vascularity, and interstitial findings. These data as well as image features and

quantitative indices like SUV and MTV of PET are subjected to artificial intelligence (AI) for radiomics analysis.

Other available data such as MRI and contrast enhancement are welcome by AI for more detailed analyses.

Modalities used in the clinical setting include PET and single photon emission computed tomography, as well as

MRI and ultrasonography. Optical imaging, such as fluorescence and bioluminescence imaging, plays an important

role in preclinical settings; however, penetration of these signals is too shallow to detect labeled immune cells in

clinical situations, and currently used contrast materials, such as gadolinium based agents, super paramagnetic

iron oxide, and perfluorocarbon labeled with fluorine-19, for MRI are non-specific for immune cells. Therefore,

nuclear medicine imaging is a possible procedure to elucidate anti-cancer immune responses . Cell tracking

of particular cell subsets would be done by radiolabeling in vitro prior to re-administration or by injecting a

radiopharmaceutical that binds to a specific membrane antigen in vivo . There have been many

radiopharmaceuticals for cell tracking; however, none of these have been successfully used in clinical practice so

far (Table 2).

Table 2. Potential Radiopharmaceuticals to Image Immune Cells and Cell Tracking.
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Target Radiolabeling Agent Application/Mechanism References

T lymphocytes

In-oxine, Zr-oxine Tumor infiltration

F-FDG Cytokine production

SPIO  

NK cells

In-oxine, Zr-oxine Tumor infiltration

F-FDG, C-methyl
iodide

NK cell homing

SPIO  

Macrophages

In-oxine, Zr-
nanoparticles

Tumor infiltration

F-FDG
Tumor-associated

macrophages

SPIO, F-
perfluorocarbon

 

Interleukin-2
Iodine-123,

Technetium-99 m,
Fluorine-18

Interleukin-2 receptors on T
cells

Anti-CD8 cys-
diabody Zirconium-89,

Copper-64
CD8  T cells

Anti-CD8 mAb

PK11195 Carbon-11
Tumor-associated

macrophages, Translocator
protein

Anti-TCR mAb Copper-64 Tumor infiltration of T cells

Anti-CD56
mAb

Technetium-99 m NK cells

F-FDG: 2-[ F] fluoro-2-deoxy-d-glucose; SPIO: super paramagnetic iron oxide; TCR: T cell receptor; mAb:

monoclonal antibody.

4. Conclusions

Quantitative parameters of FDG-PET, such as SUV and TLG, have been used to evaluate therapeutic responses.

Metabolic changes and temporal enlargement due to immune cell infiltration seen after immune checkpoint
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inhibitors, anti-PD-1, and anti-PD-L1 antibodies facilitate the modification of FDG-PET response evaluation criteria

as well as conventional RECIST. Dynamic interaction between cancer and immune cells, CSCs, and metabolism of

cancer cells in the tumor microenvironment are promising targets to eradicate cancer. Accumulation of FDG

reflects glucose metabolism of both cancer cells and immunologically competent cells in the tumor. Considering

inter- and intra-patient tumor heterogeneity, immunological reaction to the therapy differs among patients according

to the individual immune function and tumor heterogeneity. This limits the use of current response evaluation

criteria and the revised ones may not be relevant enough for use in the clinical setting. Then, imaging of immune

cells tracking may be crucial but is still a challenge, due to the fact that radiopharmaceuticals or MRI probes which

are highly specific for biomarkers expressed in different immune cells are not likely to be determined. A radiomics

approach which combines quantitative image features and deep learning algorithms has the potential to improve

response assessment on the basis of elucidating pathologic mechanisms in more personalized treatments in the

era of precision nuclear medicine. Multimodal imaging to highlight new therapeutic biomarkers in the complexed

tumor response may be required to improve the management of cancer patients.
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