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Parkinson’s disease (PD) is a slowly progressive multisystem disorder affecting dopaminergic neurons of the

substantia nigra pars compacta (SNpc), which is characterized by a decrease of dopamine (DA) in their striatal

terminals. A crucial unmet demand in the management of Parkinson’s disease is the discovery of new approaches

that could slow down, stop, or reverse the process of neurodegeneration. Novel potential treatments involving

natural substances with neuroprotective activities are being developed. Curcumin is a polyphenolic compound

isolated from the rhizomes of Curcuma longa (turmeric), and is considered a promising therapeutic and

nutraceutical agent for the treatment of PD. However, molecular and cellular mechanisms that mediate the

pharmacological actions of curcumin remain largely unknown. Stimulation of nicotinic receptors and, more

precisely, selective α7 nicotinic acetylcholine receptors (α7-nAChR), have been found to play a major modulatory

role in the immune system via the “cholinergic anti-inflammatory pathway”. Recently, α7-nAChR has been

proposed to be a potential therapeutic approach in PD. In this review, the detailed mechanisms of the

neuroprotective activities of curcumin as a potential therapeutic agent to help Parkinson’s patients are being

discussed and elaborated on in detail.
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1. Curcumin as a Potential Neuroprotective Agent

Curcumin was named after Vogel and Pelletier, the first to isolate a “yellow coloring-material” from the rhizomes of

Curcuma longa in (turmeric) 1815. Later, in 1842, they discovered that turmeric is a complex mixture of ingredients

and were successful in isolating pure curcumin oil. In 1910, Milobedeska and Lampe characterized its structure as

diferuloylmethane, or 1,6-heptadiene-3,5-dione-1,7-bis (4-hydroxy-3-methoxyphenyl) (Figure 1), and three years

later they synthesized curcumin .[1]
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Figure 1. The source, crude form, and chemical structure of curcumin. (A) The botanic source of turmeric. (B)

Crystallized powder of curcumin. (C) The enol and keto forms of curcumin.

2. Chemical and Physical Properties of Curcumin

Curcumin is a symmetric molecule composed of three major chemical entities: two aromatic ring systems

containing O-methoxy phenolic groups linked by a seven-carbon linker containing α, β-unsaturated diketone moiety

(Figure 2). Curcuminoid (the yellow-pigmented turmeric preparation) accounts for 3–5 percent of turmeric and is

primarily composed of three derivatives: curcumin (diferuloylmethane, curcumin I ~77%), demethoxycurcumin

(DMC, curcumin II), bisdemethoxycurcumin (BDMC, curcumin III), and cyclo-curcumin . All three derivatives are

considered to be natural turmeric analogs. Curcumin exhibits keto-enol tautomerism, with enol forms

predominating in alkaline media and keto forms predominating in acidic or neutral media . Curcumin is a

hydrophobic compound that is insoluble in polar or neutral solvents such as water. It can be dissolved in organic or

hydrophobic solvents such as dimethylsulfoxide (DMSO), ethanol, and acetone . Tetrahydrocurcumin (THC),

dimethyl curcumin, di-demethyl curcumin, Vanillylidenacetone, Di-(tert-butyl-dimethylsilyl) curcumin, O-tert-butyl-

dimethylsilyl curcumin, and curcumin-d6 are all commercially available curcumin metabolites.

[2][3]

[2]

[4]
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Figure 2. Chemical structural groupings that are responsible for the antioxidant properties of curcumin. Curcumin

is composed of three chemical entities: two aromatic ring systems containing O-methoxy phenolic groups linked by

a seven-carbon linker containing of α, β-unsaturated diketone moiety.

3. Pharmacokinetics and Pharmacodynamics of Curcumin

Human studies of curcumin’s pharmacokinetics yielded results that were similar to those obtained from animal

studies. Because of its poor absorption, curcumin has a low bioavailability in plasma and tissues, rapid hepatic

metabolism, as well as rapid systemic elimination through the gut with a peak human plasma level of 0.41–1.75

µmol/L after the oral administration of 4–8 g of curcumin . Many studies have shown that curcumin is primarily

metabolized in the liver, where it undergoes extensive reduction via alcohol dehydrogenase, followed by

glucuronate and sulfate conjugation . Furthermore, Perkins and colleagues reported that humans require a

daily dose of 1.6 g curcumin to achieve the desired results .

Almost all studies have confirmed that unformulated curcumin has low bioavailability in both animals and humans

. Various formulations have been developed to improve curcumin bioavailability. Nano curcumin, for example,

was developed to improve curcumin solubility in an aqueous solution. Cheng et al. generated a nanoparticle form

of curcumin that resulted in a higher plasma concentration and a six-fold higher AUC with a longer mean residence

time in mice brains. . Polylactic-co-glycolic acid (PLGA) and liposomal-formulated curcumins improved water

solubility of the compound . In regards to curcumin permeability, cyclodextrin (CD) encapsulated curcumin

improved curcumin permeability compared to unformulated curcumin . Concomitant administration of piperine

with curcumin significantly reduced elimination and half-life clearance of curcumin . Alginate–curcumin

nanoparticles (Alg-NP-Cur) , glyceryl mono-oleate nanoparticles loaded with piperine and curcumin (GMO-NP-

Pip/Cur) , curcumin-loaded lactoferrin nanoparticles (Lf-NP-Cur) , and curcumin-loaded polysorbate 80-

modified cerasome (CPC) nanoparticles (NPs) , are different preparations developed to maximize curcumin

bioavailability.

[5][6]

[7][6]
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4. Biological Properties of Curcumin

Curcumin, a multi-targeted compound, has traditionally been used as a dietary spice and a medicinal herb in Asian

countries for a variety of pathologies due to its anti-inflammatory properties , and antioxidant properties .

Moreover, curcumin possesses antibacterial , antiviral , antifungal , anti-arthritic , hepatoprotective ,

anti-thrombotic , cardio-protective , hypoglycemic , anti-allergic , wound-healing , and chemo-

preventive and anticancer properties . Curcumin’s anti-inflammatory and antioxidant effects, among others,

form the basis of curcumin’s critical neuroprotective effects in a variety of neurological diseases affecting both the

central and peripheral nervous systems. Several molecular targets of curcumin have been identified based on

extensive evidence from in vitro and in vivo studies.

5. Molecular and Cellular Neuroprotective Mechanisms of
Curcumin in PD

The present review focuses on recent advances and the mechanisms underlying the wide range of biological

effects of curcumin against neurodegenerative diseases, specifically Parkinson’s disease. Curcumin’s ability to

modulate the functions of multiple signal transduction pathways has been linked to a reduction in disease

progression. Curcumin interacts with transcription factors such as z transcription (STAT) proteins , growth

factors and their receptors, e.g, epidermal growth factor receptors and HER2 , cytokines, e.g., interleukin 1b

(IL-1b), interleukin 6 (IL-6) , enzymes, e.g., hemox (HO-1) , and genes that regulate cell proliferation and

apoptosis . The ability of curcumin to modulate and interact with multiple cell signaling pathways and proteins

strongly indicates that this polyphenol is an effective multi-targeted compound . This conclusion is in line

with several recently published reports identifying curcumin as a potent epigenetic regulator . Interestingly,

curcumin’s inhibitory effect on MOA-B enzyme , which would lead to an increase in the level and availability of

DA in the brain, has gained much attention in recent years, as discussed below.

A critical unmet need in the management of PD is the discovery of new approaches that could slow, stop, or ideally

reverse, the process of neurodegeneration. Curcumin’s neuroprotective potential has been demonstrated in

several recent studies using various animal models of Parkinson’s disease . For instance,

Zbarsky described the protective effects of curcumin on the number of TH-positive neurons as well as on striatal

DA level and its metabolites; dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) against 6-

hydroxydopmine (6-OHDA) induced neurodegeneration in animal models of PD . The advantage of curcumin

over other derivatives, such as demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), was reported on

DA receptor (D2) binding activities and on the number of TH +ve neurons . Yang et al. described the protective

effects of curcumin on the injured hippocampus in an 6-OHDA model of PD, including a significant improvement in

mental status, weight gain, neurobehaviors, learning and memory, levels of dopamine and norepinephrine, neural

regeneration in hippocampal tissue, and cell survival-related signaling pathways such as BDNF, TrkB, and PI3K

. Moreover, brain-derived neurotrophic factor (BDNF), a member of the neurotrophin growth factor family, which

is involved in various neurological functions, is affected in PD . Curcumin restores neuronal regeneration by

stimulating Trk/PI3K signaling cellular cascade, reducing levels of tumor necrosis factor-α (TNF-α) and caspase

[20] [21][22]
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activity, hence increasing levels of BDNF in 6-OHDA model of PD . Recently, we investigated the

neuroprotective effects of curcumin in a 6-OHDA animal model of PD . The results indicated that curcumin

enhances the survival of striatal TH fibers and SNpc neurons, decreases abnormal turning behavior, and exerts

neuroprotective properties at least partly via an α7- nAChR-mediated mechanism. These findings provide evidence

that α7-nAChRs could be a potential therapeutic target and curcumin would be the first natural agent which is

reported to modulate nicotinic receptors in PD.

Curcumin is an excellent scavenger for most ROS in a concentration or dose-dependent manner . Remarkably,

curcumin inhibits oligomerization of α-synuclein, protein aggregation, and consequently neural toxicity ,

and produces potential inhibitory effects on astrocytic activation as well as NADPH oxidase system .

Regenerating the oxidative status of curcumin could be achieved by a chain-breaking or a hydrogen donor

antioxidant such as vitamin E or ascorbic acid (Figure 3). 

Figure 3. Suggested sites of exchange of phenol OH-group in curcumin structure with free radical oxidants, and its

regeneration by a hydrogen donor antioxidant.

6. Neuroprotective Mechanisms of Curcumin via Nicotinic
Acetylcholine Receptors

Curcumin’s pharmacological actions are thought to be mediated by a variety of ligand-gated ion channels and

receptors . The recent study on the effects of the natural polyphenol compound provides evidence that curcumin

possesses a potent neuroprotective effect as it preserves the integrity of the nigrostriatal dopaminergic system.

This is distinctly manifested in the improved motor behavioral performance in the curcumin-treated animals through

a α7-nAChRs-mediated mechanism . This study adds to previous in vitro studies that show that curcumin

enhances the effects of acetylcholine (ACh) through the function of α7-nAChRs in a concentration-dependent

manner . In addition, the results from another in vitro study highlight the significant role of curcumin in

modulating the fluxes of calcium (Ca ) ions via α7-nAChRs . Based on the previous findings that curcumin acts
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as a type II PAM of α7-nAChRs and a potentiator of receptor function by significantly decreasing desensitization

, it is reasonable to conclude that curcumin’s PAM action on α7-nAChRs has a beneficial effect in mediating

neuroprotective effects . Curcumin’s time-tested safety, neuroprotective efficacy, and preliminary clinical

success of agents targeting nicotinic receptors in PD make it an appealing natural candidate for further

investigation and development in the search for PD therapeutics.

Our in vitro, in silico, and in vivo findings suggest that increasing Ca  influx may have a neuroprotective

mechanism in neuronal and non-neuronal cells via various intracellular mechanisms, as shown in Figure 4 

. Stimulation of presynaptic α7-nAChR stimulates vesicular DA release via a Ca -dependent facilitation

mechanism . Extracellular signal-regulated mitogen-activated protein kinase (ERK/MAPK) activation can

be triggered by protein kinase A (PKA) and/or calcium-calmodulin-dependent protein kinase (CaMK) . A rise in

intracellular Ca  levels is considered as a trigger factor of both signaling cascades. Activation of (ERK/MAPK) is a

crucial signaling event in the cell survival pathway via upregulation of the cellular transcription factor; cAMP

response element-binding (CREB), increasing gene expression of tyrosine hydroxylase and enhancing DA release

. α7-nAChR is also expressed on microglia and astrocytes and plays a major role in immune response via the

“cholinergic anti-inflammatory pathway”. Activation of α7-nAChR results in an increase in intracellular Ca

concentration, and consequently modulates Janus kinase 2 (JAK2) and/or signal transducer and activator of

transcription 3 (STAT3), ending up with an upregulation of protein kinase B (PKB), leading to inhibition of nuclear

factor-kB (NFκB) . The lipid signaling cascade that is started by protein kinase C (PKC), via phosphorylation of

phosphatidylinositol 3-kinase (PI3K/Akt), is accredited with modulating the activities of neuroprotective and

apoptotic factors, such as Bcl-2 and caspases, respectively . Recent data demonstrate that the regulation

of neuroinflammatory reactions by curcumin occurs through the modulation of the microglial JAK/STAT signaling

pathway . Collectively, all or some of these factors result in decreased apoptosis, enhance neuronal survival,

modify immune responsiveness, and produce alteration in synaptic plasticity .
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Figure 4. Hypothetical model of Ca -dependent cell survival mechanism. Curcumin modulate α7-nAChR

allosterically allowing more Ca  entry into the cell as depicted from the electrophysiological recording. Increase in

intracellular Ca  concentration will lead to a cascade of events in dopaminergic neurons (from left to right):

Facilitation of dopamine release from synaptic vesicles. Activation of ERK by PKA and/or CaMK, upregulate CREB

protein, increase tyrosine hydroxylase activity, and activate dopamine release. JAK2/STAT3 signaling pathway

leads to inhibition of NF-kB translocation via PKB activation. Increase in IC Ca  attenuates inflammatory response

in immune cells activating protein kinase C, PKC appears to activate downstream signaling PI3K/AKT pathways

that promotes Nrf-2 translocation resulting in modulation of cell survival proteins; Bcl-2 and caspase.
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