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Semantic segmentation for remote sensing images (RSIs) plays an important role in many applications, such as

urban planning, environmental protection, agricultural valuation, and military reconnaissance. With the boom in

remote sensing technology, numerous RSIs are generated; this is difficult for current complex networks to handle.

Efficient networks are the key to solving this challenge.

convolutional neural network (CNN)  deep supervision  lightweight model

1. Introduction

Remote sensing is a crucial technical tool for large-scale observations of the Earth’s surface. With the rapid

development of Earth observation and remote sensing imaging technology, remote sensing has entered the era of

big data . Big data qualities for remote sensing primarily involve three Vs: volume, velocity, and variety of data .

Every day, a massive volume of remote sensing data must be handled in the era of big data for remote sensing.

Furthermore, increasingly diverse remote sensing data are playing important roles in several fields. Due to

advances in imaging technology, very high-resolution (VHR) imagery has shown considerable potential in remote

sensing images (RSIs) interpretation and has been the focus of semantic segmentation.

Semantic segmentation is a critical task in computer vision, and its special application to remote sensing is RSI

interpretation. It requires pixelwise parsing of the input image to retrieve the predefined categories to which the

elements belong. Semantic segmentation has broad and vital applications in a variety of fields. This is especially

true in the realm of remote sensing, where subjects such as integrated land use and land cover mapping , town

change detection , urban functional areas , building footprints , impervious surfaces , and water body 

extraction. The majority of these applications and methodologies are based on VHR images and are constrained

by the two issues listed below. (1) Information modeling with little detail. In comparison to prior low-resolution

images, VHR images give unequal spatial and semantic information volume gains. The significant improvement in

spatial resolution allows for the observation of previously unseen features. However, vital detail information is

mixed in with a vast volume of redundant information, providing additional obstacles for information extraction. (2)

Inefficient processing. On the data processing front, high-resolution imagery implies that the amount of data to be

processed per unit of observation area for interpretation is rising dramatically, posing a considerable challenge for

hardware and algorithms.
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Researchers have proposed numerous ways to overcome the difficulties of semantic segmentation for VHR

images in the age of big data. Deep learning algorithms are the primary techniques for semantic segmentation at

the moment. Unlike classic machine learning algorithms based on prior knowledge and predetermined rules, deep

learning algorithms are data-driven algorithms that perform poorly with tiny data samples but may be utilized to

great advantage in the era of big data. Deep learning-based convolutional neural networks (CNNs) outperform

classic machine learning methods in terms of performance. Fully convolutional networks (FCNs)  have been

utilized to obtain outstanding results in the semantic segmentation of RSIs. Following study, numerous model

variants based on the FCN architecture have been developed, making substantial advances in various aspects.

UNet , which is based on an encoder-decoder architecture, enhances the FCN’s capacity to represent the

multiscale features of images through contraction paths and expansion paths for achieving high-precision road 

and coastline recognition  in RSIs. The DeepLabv3 series  utilize parallelized atrous spatial pyramid

pooling (ASPP) with varying ratios to expand the models’ reception fields while obtaining multiscale features; these

models are widely used in RSI semantic segmentation, cloud detection , etc. However, because to the poor

inference speeds of these models and the high hardware needs placed on deployed devices, these approaches

find it difficult to overcome the aforementioned two problems. Figure 1 depicts the problem of building

segmentation models that take both efficiency and performance into account.

Figure 1. Speed-accuracy tradeoff yielded by different semantic segmentation methods on the ISPRS Potsdam

dataset with a size of 6000 × 6000 pixels using an RTX 3090 GPU. Orange points: different versions of the

proposed method. Red points: lightweight methods with more than 1.5 M parameters. Blue points: lightweight

methods with less than 1.5 M parameters. The proposed methods achieve the best speed-accuracy tradeoffs. It is

worth noting that that the sizes of the corresponding points of the methods are positively correlated with their

parameters.
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In addition to investigating model segmentation performance, another approach is to optimize the efficiency and

accelerate the inference speed of the utilized model. A conceivable way to accomplish lightweight model building is

to reduce the number of model channels and add an attention mechanism to compensate for the loss in model

performance . In addition to incorporating an attention module, the introduction of a deep supervision  module

can also enhance the segmentation performance of the model. By actively monitoring the body and edge

characteristics of the object of interest, a lightweight semantic segmentation network was suggested to maximize

the overall consistency and object details of semantic segmentation results . Loss functions expressly designed

for the semantic segmentation task can speed up the learning process of the resultant model for fundamental

spatial information such as borders  and spatial correlations , as evidenced by higher performance with the

same amount of training epochs. These lightweight networks struggle to capture the rich, detailed aspects of VHR

images with fewer parameters, reducing accuracy significantly.

2. Efficient Network Designs

Researchers are discovering that network design is becoming increasingly crucial as the Visual Geometry Group

network (VGGNet) , the residual network (ResNet) , and DenseNet  models continue to be suggested.

Because semantic segmentation is a dense prediction task, related models tend to have more parameters and

slower inference speeds, which is harmful to model deployment and severely limits their application possibilities.

An efficient network design paradigm lends itself well to the creation of efficient segmentation networks. By

extensively replacing the 3 × 3 convolution in the model with a 1 × 1 convolution and reducing the number of

channels in the 3 × 3 convolution, SqueezeNet  achieves comparable classification accuracy to AlexNet  with

2% of the total parameters. The MobileNet series  has steadily introduced new techniques to deep

separable networks such as inverted residuals and neural architecture search (NAS). By integrating group

convolution and channel shuffling operations and employing four recommendations, the ShuffleNet series 

achieves a balance between accuracy and parameter number. 1. Equal channel widths minimize the memory

access cost (MAC). 2. Excessive group convolution increases the MAC. 3. Network fragmentation reduces the

degree of parallelism. 4. Elementwise operations are nonnegligible. Several outstanding and efficient semantic

segmentation models have been presented as a result of these exploratory efforts on efficient network

construction.

3. Efficient Semantic Segmentation Methods

Efficient semantic segmentation models strive for a balance between accuracy and speed, with considerable

inference speed benefits at a low accuracy cost. They represent a significant development in the field of semantic

segmentation in terms of efficiency, and they have created many good works based on the collaborative efforts of

scholars. The two dominant approaches point the way to achieving high-accuracy and efficient semantic

segmentation. 1. Light-weight backbones. ENet , a representative of earlier efficient segmentation models,

greatly reduces the number of required parameters and floating point operations (FLOPs) by employing an

asymmetric encoder-decoder structure and factorizing filters. Subsequent work has focused on asymmetric
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networks, with the goal of improving model performance by using deeply separable convolutions , dilated

convolutions , factorized convolutions , dense connections , skip connections , pyramidal pooling 

and channel splitting and shuffling . The Fast-shallow CNN (SCNN)  adopts shared shallow network paths to

encode details while learning contexts at low resolutions, saving computing costs. STDCNet  utilizes a

lightweight backbone network from DenseNet with layer concatenation. Dual-resolution branch networks ,

exemplified by the bilateral segmentation network (BiSeNet) series , provide effective segmentation by

modifying extraction branches for spatial and semantic information independently. 2. Feature aggregation. The

deep feature aggregation network (DFANet)  recommends two deep branches where several bilateral fusions

are conducted. By steering upper-level feature upsampling using low-level features, SFNet  achieves higher-

resolution restoration and cross-layer feature aggregation. DDRNet  advises two deep branches between which

multiple bilateral fusions are performed.

4. Information Enhancement Modules

The information in computer vision tasks can be divided into spatial and semantic information, both of which

contribute significantly to accurate segmentation. (1) Enhancing spatial information. Typically, the shallow layer of

the encoder may better describe spatial information. Ensuring that a branch has a high resolution preserves spatial

information to the greatest extent possible. STDCNet adopts the Laplacian kernel of the pyramid hierarchy as an

auxiliary loss function, which expedites the process of learning spatial edge features. Researchers suggest that the

quantifications and statistics of spatial texture aspects are likewise of great significance due to quantization and

counting operators. (2) Enhancing semantic information. PSPNet  adopts pyramid pooling to enhance the

observed multiscale semantic features. The DeepLab series  utilizes parallel atrous convolutions with

varying dilation rates; this approach is called ASPP, which can encode multiscale semantic information more

effectively. DANet  models long-range dependencies in the channels and positions of sematic features using a

dual self-attention module. OCRNet  explicitly turns the pixel classification problem into an object area

classification problem, computes the relationship between each pixel and each object region, and augments the

representation of each pixel with an object-contextual representation.

5. Attention Mechanisms

The selected attention mechanism is a crucial component of model design and is a key module for improving

model performance. It is a descriptive weighting of the relationship between a particular attribute (from a small pixel

value to an entire channel) and the data, so that it can be chosen to suppress or amplify that attribute at a

particular location in order to achieve a selective representation of a particular feature for the model. The

outstanding early approach is the squeeze-and-excitation network (SENet) , which squeezes the features on

each channel by global maximum pooling and uses a fully connected layer to encode the features into a low-

dimensional space before performing decoding. This makes the SENet an excellent attention module without

imposing many additional parameters or a large computational burden on the subject network. The SENet’s

concept of squeezing and extracting channels and examining spatial attention inspired further research. Important

[34]

[35] [36][37] [38] [39] [40]

[41] [42]

[38]

[43]

[44][45]

[46]

[47]

[48]

[49]

[15][16][50][51]

[52]

[53]

[54]



Deep Supervision-Based Simple Attention Network | Encyclopedia.pub

https://encyclopedia.pub/entry/35303 5/10

follow-ups include the block attention module (BAM)  and convolutional BAM (CBAM) . A BAM includes a two-

branch parallel attention computation paradigm, with channel attention branches that adhere to the SENet’s

approach. Spatial features are squeezed in the channel dimension by a 1 × 1 convolution, key spatial features are

extracted using a 3 × 3 convolution, and finally, a pixelwise summation operation is performed for both attention

weights. A CBAM selects a multistep attention paradigm that combines channel attention and spatial attention

simultaneously. The combination of spatial attention with gated mechanisms is another way to utilize attention

mechanisms . Unlike the idea of feature compression and extraction in the above work, self-attention  is a

pixel-level attention mechanism. The computational complexity and resource needs of this method are an order of

magnitude more than those of the preceding approaches, despite the fact that its performance is superior.

Transformers , which outperform CNNs in many tasks, are excellent models based on self-attention; however,

researchers are still designing optimizations for visual tasks such as patches  and hierarchical architectures 

 to overcome the fatal flaw of a computationally intensive attention mechanism. Fortunately, self-attention based

on queries, keys and values can be optimized from O(n2) complexity to linear complexity by changing the order of

computation , performing approximate computation , and conducting low-rank singular value decomposition

.

It is typical practice for effective semantic segmentation networks  to utilize an attention module based on the

SENet or linear simplified self attention due to its computational efficiency and inference speed.
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