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Graph neural networks (GNN) and deep reinforcement learning (DRL) are at the forefront of algorithms for advancing

network automation with capabilities of extracting features and multi-aspect awareness in building controller policies.

While GNN offers non-Euclidean topology awareness, feature learning on graphs, generalization, representation learning,

permutation equivariance, and propagation analysis, it lacks capabilities in continuous optimization and long-term

exploration/exploitation strategies. Therefore, DRL is an optimal complement to GNN, enhancing the applications towards

achieving specific policies within the scope of end-to-end (E2E) network automation.
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1. Introduction

Following the establishment of comprehensive advanced 5G and 6G standards, 2019 to 2023 has witnessed the

pioneering commercial deployment of fast-speed wireless networks, which supports the advent of smart digital

transformation. The internet evolution presents advancements in ultra-reliable low-latency, high-throughput, mobility-

aware, and high-coverage connectivity that set a new benchmark compared to the previous network generations .

Forecasts by the International Telecommunication Union (ITU) anticipate exponential growth in global mobile data traffic,

with projections extending from 390 exabytes to 5016 exabytes between 2024 and 2030, respectively . As digital

transformation and its volume expand with the benefits of widespread coverage and lightning-fast connections, it also

faces significant challenges in managing the growth in data, devices, and services . To address these evolving

challenges, a shift towards network automation is essential to breaking down barriers within end-to-end (E2E) solutions,

which spans three domains: radio access networks (RAN), transport networks, and core networks.

Traditional RAN requires redesigning with AI-empowered control , shared cloudification , optimized power allocation 

, and highly programmable handover and interoperability . During the redesign process, initial challenges arise in

data exposure capability and the level of network infrastructure knowledge necessary to support rich-feature input and

processing for network automation. Considering the significant objectives of integrating AI, O-RAN, and software-defined

networking (SDN)-enabled management, the ability to encode network conditions (signal, interference, spectrum

availability, etc.) and decode hidden relationships between each timeslot remains burdensome. Furthermore, transport

and core networks also require the ability to understand traffic (congestion) patterns, resource utilization, and anomaly

detection in complex topology graphs . Therefore, before focusing on other potential issues in E2E networking,

one key research is the selection of optimization algorithms that handle complex graph-structured topologies and extract

data to support self-organizing capabilities .

Previous works supported by standardization, academia, and industry experts, are coming to conduct the creation of

cutting-edge testbeds and simulation tools for network intelligence . The motivation from existing testbeds has

guided researchers towards integrating three key objectives, namely zero-touch autonomy, topology-aware scalability, and

long-term efficiency, into network and service management . In terms of these goal-oriented optimizations, graph

neural networks (GNN)  and deep reinforcement learning (DRL)  are at the forefront of algorithms for

advancing network automation with capabilities of extracting features and multi-aspect awareness in building controller

policies. While GNN offers non-Euclidean topology awareness, feature learning on graphs, generalization, representation

learning, permutation equivariance, and propagation analysis , it lacks capabilities in continuous optimization

and long-term exploration/exploitation strategies. Therefore, DRL is an optimal complement to GNN, enhancing the

applications towards achieving specific policies within the scope of E2E network automation.
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2. GNN

2.1. GNN and Its Variants

GNN represents a class of deep learning models designed to perform inference on data structured as graphs. Initially,

GNN is particularly powerful for tasks where the data are inherently graph structured, such as social networks ,

chemistry , and communication networks . The core idea behind GNN is to learn representations (embeddings) for

each node/edge that capture both (1) key features and (2) the structure of local graph neighborhood. GNN iteratively

updates the representation of a node by aggregating representations of its neighboring nodes and combining them with its

current representation.

Several well-known variants of GNNs have been developed, where each with its own approach to modify on aggregation

and updating steps, including (1) graph convolutional networks (GCN)  simplify the aggregation step by using a

weighted average of neighbor features, where weights are typically based on the degree of the nodes; (2) graph attention

networks (GAT)  introduce attention mechanisms to weigh the importance of each neighbor’s features during

aggregation dynamically; (3) GraphSAGE  extend GNN by sampling a fixed-size neighborhood for each node and

using various aggregation functions, such as mean, LSTM, or pooling; (4) message passing neural networks (MPNN) 

generalize several GNN models by defining a message passing framework, where messages (aggregated features) are

passed between nodes; (5) edge-node GNN  target on edge updates alongside node updates for radio resource

management, which demonstrated superior performance in beamforming and power allocation to achieve higher rates

with less computation time.

2.2. Applied GNN in E2E Networking

Beyond traditional networking approaches, GNN offers a paradigm shift for network intelligence through the capability to

model and analyze the hidden relationships and dynamic attributes in graph-structured massive network topologies.

Furthermore, GNN with permutation equivariance offers a significant advantage in communication networks by treating

equivalent network configurations, even if nodes swap positions, as the same from a network function perspective. This

key factor translates to reduced training effort, making GNN particularly well suited for analyzing and optimizing complex

network structures .

3. DRL

3.1. DRL and Its Variants

DRL combines the principles of reinforcement learning with the representation learning capabilities of deep neural

networks (DNN) by (1) enabling agents to learn optimal policies for decision making, (2) interacting with the environment

through observing states and applying actions, (3) receiving feedback by proposing specific reward functions, and (4)

targeting to maximize cumulative long-term rewards . The foundations of DRL involve the Bellman equation used to

update the value, as Equations (3) and (4), where (1) 𝑉(𝑠) is the value of state 𝑠, (2) 𝑄(𝑠,𝑎) is the value of taking action 𝑎 in

state 𝑠, (3) 𝑅𝑡 is the reward at time 𝑡, and (4) 𝛾 is the discount factor. 

3.2. Applied DRL in E2E Networking

DRL marks a significant evolution in networking intelligence, diverging from conventional strategies by its adaptability and

learning-driven approach to optimize network functions . Table 1 outlines DRL notable studies in E2E

networking contexts, including the networking domains, key remarks, state observation, action implementation, and

reward targets.

Table 1. Selected comprehensive works on applied DRL.

Network Domains Key Remarks State Action Reward Ref. Year

Access networks:
(1) maximizing the
sum rate
(2) adhering low
latency
requirements in
smart
transportation
services

Utilization of an
attention mechanism
to focus on relevant
state information
among agents

Partial CSI,
including received
interference
information,
remaining payload,
and remaining time
for V2V agents

Sub-band selection
and power
allocation for V2V
agents

Maximization of
the total
throughput on V2I
links while
ensuring low
latency and high
reliability for V2V
links

2022
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Network Domains Key Remarks State Action Reward Ref. Year

Access networks:
(1) optimizing total
weighted costs for
task offloading and
resource allocation
in an SDN-enabled
Multi-UAV-MEC
network

Model-free DRL
framework
employing Q-
learning with
enhancements to
handle the mixed-
integer conditions of
task offloading and
resource allocation

Global network
state including task
requests from
ground equipment,
available UAV
resources, and
current network
configurations

(1) task offloading
decisions (local
processing or
offloading to a
UAV) and (2)
resource allocation
strategies
(assigning
computation
resources to tasks)

The negative
weighted sum of
task processing
delay and energy
consumption

2021

Transport
networks:
(1) maximizing
overall system
throughput for real-
time traffic demand
across
autonomous
systems

Utilization of policy
gradients and
handling partial
observability while
adopting actor-critic
algorithms for
stability

Source and
destination of flows,
current traffic loads
on links to
neighbors, and
observed
throughputs

Selection of next-
hops for routing
traffic flows

Average
throughput of all
concurrent flows
traversing an
agent

2020

Transport
networks:
(1) optimizing the
routing decisions
by minimizing
delay and loss
while maximizing
throughput

The proposed model
used DQN for SDN to
proactively compute
optimal routes
(leveraging path-
state metrics for
dynamic traffic
adaptation)

Source-destination
pairs

Selection of
specific E2E
routing paths

Path-state metrics
including path
bandwidth, path
delay, and path
packet loss ratio

2021

Core networks:
(1) optimizing the
allocation of VNF
forwarding graphs
to maximize the
number of
accepted requests

Enhanced DDPG with
heuristic fitting
algorithm to translate
actions into
allocation strategies

VNF forwarding
graphs, including
computing
resources for VNFs
and QoS
requirements for
VLs

Allocation
decisions for VNFs
on substrate nodes
and paths for VLs

Acceptance ratio
based on
successful
deployment of
VNFs and VLs
while meeting
resources and
QoS requirements

2019

Core networks:
(1) optimizing
adaptive online
orchestration of
NFV while focusing
on maximizing E2E
QoE of all arriving
service requests

Utilization of a policy
gradient-based
approach with Q-
learning
enhancements to
handle the state
transitions and real-
time network state
changes

CPU, memory
bandwidth, delay,
orchestration
results of executing
SFC, and the arrival
requests with
different QoS
requirements

The allocation of
network resources
and VNFs to fulfill
the request

Maximizing QoE
while satisfying
QoS constraints

2021

4. Integrated GNN and DRL in E2E Networking Solutions

The synergy of GNN and DRL capitalizes on (1) GNN: the capability to encode complex graph environments, approximate

actions/rewards, and compute q-values, along with (2) DRL: the ability to explore GNN architectures and evaluate the

accuracy of readout predictions. Figure 1 presents the overview of fusing both algorithms and key features that

complement each other. Together, GNN+DRL extract auxiliary network states, advance generalization/adaptability, and

adopt data-driven learning for multi-aspect awareness reward functions towards pioneering network automation.

Figure 1. Overview of GNN+DRL and the key features.
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4.1. Access Networks

Figure 2 illustrates the schematic representation of the wireless network input in relation to the policy objectives that

emphasize the strategic applications of integrating GNN and DRL. The key to understanding how GNN works is focusing

on how graph information is input to subsequent hidden layers, which primarily involves the concepts of message passing,

aggregation, feature transformation, and update mechanisms that enable the network to learn from the graph structures

and node features. After the initial round, the updated node features can serve as input to the next hidden layers. Each

hidden layer can perform its own steps, which allows the network to capture more complex patterns and relationships at

higher levels of abstraction. The depth of the network (number of hidden layers) typically correlates with the reach of a

node (e.g., how many hops away in the graph the node information can propagate from).

Figure 2. Schematic graph processing from input network graphs towards access network policies.

4.1.1. RAN Slicing

Arash et al.  proposed a GNN-based multi-agent DRL framework for RAN/mobile edge computing (MEC) slicing and

admission control in 5G metropolitan networks. The authors leveraged GAT and GATv2 for topology-independent feature

extraction, which enabled scalability and generalizability across different networks. The approach used multi-agent DRL,

combining a GNN-based slicing agent with a topology-independent multi-layer perceptron (MLP) for admission control, for

optimizing long-term revenue under E2E service delay and resource constraints. The framework demonstrated significant

improvements in infrastructure provider’s revenue, achieving up to 35.2% and 25.5% overall gain over other DRL-based

and heuristic baselines. The proposed scheme maintained good performances without re-training or re-tuning, even when

applied to unseen network topologies, which showcased its generalizability and robustness.

4.1.2. Radio Resource Allocation

In E2E solutions, efficient radio resource allocation is crucial for optimal service delivery in ensuring fairness, quality of

service (QoS), efficiency, and cost-effectiveness in operational expenses. Zhao et al.  introduced graph reinforcement

learning by first transforming the traditional state and action representations from matrices to graphs, which enabled the

functionality of GNN in capturing graph-structured network topologies and node-level relationships efficiently. The graph-

based representation was then utilized within a DDPG framework, where the actor and critic networks were adapted to

handle graph inputs to allow the model to learn optimal policies for resource allocation. The proposed approach not only

reduced the dimensionality of the input data but also captured the relational dynamics between network elements more

effectively than traditional methods. The results showcased significant improvements in training efficiency and

performance for radio resource allocation tasks. The graph-based DDPG algorithm demonstrated faster convergence,

lesser computing resource consumption, and lower space complexity compared to traditional DDPG algorithms.

4.1.3. User Association

Ibtihal et al.  proposed DQN-GNN processing flow for optimizing user association in wireless networks involves a

sequence of steps. Initially, the system represents the user association problem as a graph, where nodes correspond to

users or base stations (BS), and edges represent wireless connections. A GNN is then used to encode this graph

structure by learning a representation for each node to understand the importance and connectivity within the network.

Following these steps, a DQN agent is trained to decide the best base station for user connection based on the network

state, which includes user–BS associations and other network parameters. The integration of GNN with DQN leverages

the encoded graph structure to inform the DQN agent decisions, which aims to optimize network performance by selecting

the optimal user–BS associations to maximize the reward evaluation.

4.1.4. Cluster-Free NOMA
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A NOMA framework is designed to enhance the flexibility of successive interference cancellation operations, which

eliminates the need for user clustering. The cluster-free objective aims to efficiently mitigate interference and improve

system performance by enabling more adaptable and scenario-responsive NOMA communications. Xu et al.  proposed

a comprehensive framework that significantly increases the flexibility of successive interference cancellation operations,

which is supported by advanced DRL with GNN paradigms (automated learning GNN termed as AutoGNN) to achieve

scenario-adaptive and efficient communications in next-generation multiple access environments. The proposed algorithm

leveraged the GNN+DRL integration to minimize interference and optimize beamforming in a flexible flow for cluster-free

NOMA setting. The results highlighted that the proposed AutoGNN approach for cluster-free NOMA can outperform

conventional cluster-based NOMA across various channel correlations.

4.2. Transport Networks

4.2.1. Routing Optimization

Swaminatha et al.  proposed GraphNET approach by integrating GNN with DRL frameworks to optimize routing

decisions in SDN. There are two primary phases, namely inference and training. Initially, a network state matrix

synchronized with the proposed GNN, which then predicts the most optimal path with minimal delay. The GNN, acting as

a DQN within the DRL framework, is trained using experiencing routing episodes, which employs a custom reward

function focused on packet delivery and minimizing delays. The GNN+DRL algorithm significantly reduced packet drops

and achieved lower average delays compared to traditional Q-routing and shortest path algorithms.

4.2.2. Flow Migration

Sun et al.  proposed an optimization approach on flow migration, which referred to the dynamic relocation of traffic

among different network function instances to adapt the loading statuses and balancing between network service quality

and resource utilization efficiency. The proposed framework was termed DeepMigration, which utilized (1) GNN to handle

graph-structured topology and flow distribution and (2) DRL for generating flow migration policies, while maximizing QoS

satisfactions and minimizing resource consumption. DeepMigration demonstrated significant performance improvements

in network functions virtualization (NFV)-enabled flow migration by reducing the costs and saving up to 71.6% of

computation times compared to selected baselines.

4.2.3. Traffic Steering

Rafiq et al.  integrated RouteNet model  with a delay-aware traffic flow steering module for optimal SFC deployment

and traffic steering in SDN controller. The proposed scheme predicted optimal paths considering delays through GNN.

The system autonomously selected paths with minimal delay for traffic steering and SFC deployment by leveraging the

knowledge plane for decision making. As a result, the system demonstrated efficient resource utilization and optimal SFC

deployment across different scenarios. For instance, deploying 5 VNFs across separate compute nodes showed the

model’s capability in the experiment to efficiently allocate resources, while achieving significant improvements in latency

and resource management.

4.2.4. Dynamic Path Reconfiguration

Liu et al.  introduced a novel GNN-based dynamic resource prediction model and deep dyna-Q-based reconfiguration

algorithm for optimizing SFC paths in IoT networks. The proposed GNN model was used for forecasting VNF instance

resource requirements for facilitating proactive reconfiguration decisions. The system dynamically adapted SFCs based

on predicted and real-time data that aim to balance between resources and service performances. The authors addressed

the SFC reconfiguration problem by proposing a trade-off optimization between maximizing revenue and minimizing

reconfiguration costs, including both migration and bandwidth expenses. Utilizing deep dyna-Q-based method, the study

overcome the NP-hard nature of the problem, while integrating with GNN for graph-structured scalability. The

effectiveness of the proposed model was validated against exact solutions for small networks. The experimental

evaluation demonstrated the model’s effectiveness with an average CPU root-mean-square error (RMSE) of 0.17 on

improved GNN, which was significantly lower than 0.75 achieved by original GNN.

4.3. Core Networks

4.3.1. VNF Optimization

By leveraging the virtualization and softwarization from SDN/NFV-based infrastructure, GNN+DRL can obtain efficient

computing capabilities with replay buffer for multi-epoch training towards the optimization of VNF placements, as shown in

Figure 3. Sun et al.  proposed a combination of DRL framework with graph network-based neural network for optimal

VNF placement, which addresses the challenges of resource constraints in different VNF identifiers and QoS
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requirements in massive network traffic. The authors proposed DeepOpt architecture to operate within an SDN-enabled

environment, where graph network is utilized to generalize network topology (resource, storage, bandwidth, and tolerable

delays).

Figure 3. GNN enhances DRL with replay buffer-assisted training in SDN/NFV.

4.3.2. Adaptive SFC

Hara et al.  critically considered the high-dimensional changes in graph-structured network topology and service

demands that handles future massive service chain requests. In SDN/NFV-enabled environment, authors adopted GNN

for approximating the q-values within double DQN framework. The model transformed the network by reinterpreting links

as nodes. In this transformed network, nodes are connected if their corresponding links in the original network share a

common node, which allows the original network’s link features to be viewed as node features in the transformed network

that leveraging the adjacency matrix for analysis. The authors obtained the enhancing key performance indicators on

packet drop reduction, average delay reduction, robustness against network topology changes, and optimal response to

various hyperparameter settings. Figure 4 presents the overview of logical adaptive SFC for slicing applications between

high to low-mission-critical.
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Figure 4. GNN+DRL for orchestrating service chains.

4.3.3. Core Slicing

Tan et al.  proposed a novel E2E 5G slice embedding framework that integrates GNN+DRL, primarily in core, to

dynamically embed network slices. Utilizing a heterogeneous GNN-based encoder, the scheme captured the complex

multidimensional embedding environment, including the substrate and slice networks’ topologies and their relationships. A

dueling network-based decoder with variable output sizes was employed to generate optimal embedding decisions. The

system was trained using the dueling double DQN algorithm, namely D3QN, for enhancing the flexibility and efficiency of

slice embedding decisions under various traffic conditions and future service requirements. The proposed GNN+DRL

integration achieved higher accumulated revenues for mobile network operators (MNOs) with moderate embedding costs.

Specifically, authors obtained significant improvements in embedding efficiency and cost-effectiveness, which showcased

its potential for practical deployment in 5G and beyond networks.

4.3.4. SLA Management

Jalodia et al.  combined graph convolutional recurrent networks for accurate spatio-temporal forecasting of system SLA

metrics and deep Q-learning for enforcing dynamic SLA-aware scaling policies. By capturing both spatial and temporal

dependencies within the network, the graph convolutional recurrent networks model forecasted potential SLA violations.

The deep Q-learning component utilized these forecasts to train on scaling actions, which aimed to optimize for long-term

SLA compliance. The proposed approach allowed for proactive management of network resources, while reducing the risk

of SLA breaches and enhancing overall network efficiency. The proposed framework achieved a 74.62% improvement in

forecasting performance over the baseline approaches, which demonstrated better prediction accuracy for preventing SLA

violations.

5. Application Deployment Scenarios

5.1. Smart Transportation

In , the authors address the complexity of V2X communications from the perspective of task allocation, which can be

processed either locally or by an MEC server. The authors identified communication scenarios as a significant aspect of

channel conditions in MIMO-NOMA-based V2I communications. The paper proposed a decentralized DRL approach for

power allocation in the vehicular edge computing (VEC) model that enhanced optimal policy of DDPG in terms of power

consumption and reward improvement. Furthermore,  employed DQN to learn the optimal value for the V2X pair, which

considered the agent within the RL framework in terms of action and resource allocation observation.

5.2. Smart Factory

In , authors presented a DRL-based decentralized computation offloading method tailored for intelligent manufacturing

scenarios. The paper introduced the dual-critic DDPG algorithm that uses two-critic networks to accelerate the

convergence process and minimize computational costs in edge computing systems. By implementing a multi-user

system model with a single-edge server, the dual-critic DDPG algorithm efficiently addresses computation offloading and

resource allocation challenges while demonstrating good performance in reducing system computational costs for

intensive tasks in smart factory.

5.3. Smart Grids

GNN+DRL offers significant opportunities to enhance smart grid reliability, efficiency, and sustainability, moving towards

more intelligent and resilient energy systems. By pointing out potential challenges (e.g., various QoS levels including

periodic fixed scheduling and emergency-driven packets), traditional smart grids struggle with adaptability to

massive/congested network conditions and adhere QoS requirements. In , the authors discussed an SDN proactive

routing solution using GNN for improved traffic prediction. The paper targeted on improving QoS by (1) predicting future

network congestion using GNN and (2) dynamically adjusting routing paths and queue service rates through DRL. The

proposed method enhanced the smart grid proactivity in handling of regular and emergency data traffic, which showcased

an innovative approach to managing network resources and ensuring service delivery under peak and off-peak conditions.
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6. Potential Challenges and Future Directions

6.1. Explainable GNN+DRL

While integration offers remarkable potential, granularity and complexity present a significant challenge, particularly, when

these models deploy in critical infrastructure, the decision-making hypothesis becomes increasingly concerned and

requires deep inspection. The interpretable GNN architectures require further explorations that inherently reveal the

reasons behind each flow-level, node-level, and graph-level predictions (including attention mechanisms or layer-wise

explanations). Beyond architecture interpretation, future studies should enable or guide users to understand how altering

inputs would affect model outputs, which fosters trust and debugging capabilities. Moreover, researchers can extend by

developing methods to extract insights from pre-trained models. Addressing explainability is not only ethically necessary

but also crucial for regulatory compliance and gaining wider adoption in safety-critical domains. Figure 5 describes how

explainable modelling interacts to stakeholders with understanding interfaces and outputs.

Figure 5. Explainable methods for explaining stakeholders with proper dashboard interfaces.

6.2. Overhead Consumption: Latency, Energy and Computing

The computational demands of GNN+DRL raise concerns about its real-world applicability. Beyond formulating reward

functions that jointly consider latency, energy, and computing resources, future research should focus on:

Lightweight GNN architectures, which designs efficient GNNs with reduced parameter counts and computational

complexity, potentially leveraging knowledge distillation or pruning techniques.

Hardware acceleration, which explores specialized hardware (e.g., GPUs, TPUs) or hardware-software co-design to

accelerate GNN computations and enable (near) real-time capability.

Model compression and quantization, which reduces model size and memory footprint while maintaining accuracy.

6.3. Interoperability with Existing Schemes

Integrating GNN+DRL with existing network infrastructure presents a significant challenge. The key research directions

include (1) hybrid approaches, which combines with traditional network protocols and architectures (e.g., SDN, NFV,

MEC) for enabling a gradual transition and leveraging existing operations, (2) standardized interfaces, which defines open

and adaptable interfaces that allow GNN+DRL models to seamlessly interact with diverse network components and

protocols, and (3) backward compatibility, which ensures that new models can work with older systems (minimizing

disruption and facilitating wider adoption). Figure 6 illustrates the overview of interoperating GNN+DRL in existing

software-defined and virtualized infrastructures.



Figure 6. Interoperability of GNN+DRL with SDN, NFV, MEC, and federated learning.

6.4. Reproducibility Awareness

The diverse and complex requirements of future digital networks necessitate robust reproducibility practices in GNN+DRL

research. Building a strong foundation of reproducibility is essential for fostering research growth in GNN+DRL and

ensuring its practical impact. The key research areas include:

Building standardized benchmarks and datasets, which develop publicly available, well-documented datasets and

benchmarks that represent real-world network scenarios; therefore, enabling consistent evaluation and comparison

across different studies. Due to a lack of comprehensive studies or data across all domains (access, transport, and

core networks), researchers face several issues to conduct the comparison and identify the key metrics to target during

experimentation. Different studies may use varied metrics, which making direct comparisons challenging.

Code and model sharing, which encourage open-source code and model sharing to facilitate collaboration,

reproducibility, and accelerate research progress.

Experimental design guidelines, which establish best practices for experimental design, data collection, and model

evaluation to ensure the validity and generalizability of the research findings.
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