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The dogma of mitochondria as the major source of energy in supporting sperm motility should be critically reconsidered in

the light of several experimental data pointing to a major role of glycolysis in mammalian spermatozoa. In this light, the

reported positive correlation between the mitochondrial membrane potential (ΔΨm) and motility of ejaculated

spermatozoa cannot be explained convincingly by an impaired mitochondrial ATP generation only. Evidence has been

produced suggesting that, in human sperm, dysfunctional mitochondria represent the main site of generation of reactive

oxygen species (ROS). Furthermore, in these organelles, a complex bidirectional relationship could exist between ROS

generation and apoptosis-like events that synergize with oxidative stress in impairing sperm biological integrity and

functions. Despite the activity of enzymatic and non-enzymatic antioxidant factors, human spermatozoa are particularly

vulnerable to oxidative stress, which plays a major role in male factor infertility.
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1. Introduction

Mitochondria are sub-cellular organelles of elliptical shape, consisting of an outer membrane and an inner membrane

separated by an intermembrane space. The inner mitochondrial membrane folds to form cristae extending into a protein-

dense matrix which contains mitochondrial DNA (mtDNA). The existence of mtDNA, together with structural homologies of

the inner membrane with the prokaryotic cell membrane, has led to hypothesize that mitochondria were once bacteria that

invaded eukaryotic cells, establishing a symbiotic relationship. This symbiosis would be evolved into a more complex

organism, acquiring the ability to generate energy more efficiently than glycolysis using aerobic metabolism .

Oxidative phosphorylation (OXPHOS) requires the coordinated activity of the electron transport chain (ETC) and

adenosine trisphosphate (ATP) synthase, both located in the inner mitochondrial membrane, and produces approximately

90% of cellular energy . Nevertheless, in many species, including mice  and humans , glycolysis would be

used as a preferential pathway to synthesize ATP for maintaining sperm motility.

Besides the ATP-generating activity, mitochondria also play key roles in controlling the sperm lifespan, since they

represent an interplay center between the generation of reactive oxygen species (ROS)  and the activation of

molecular pathways leading to apoptosis-like changes .

This review summarizes current knowledge on the molecular reflections of mitochondrial dysfunction on sperm biology,

focusing on the role of mitochondria in sperm energetic

metabolism and oxidative/apoptotic events.

2.  Are Mitochondria Really the Energetic Motor of Mammalian Sperm?

The role of mitochondria in the energetic support of sperm motility is a matter of debate [11,12,13]. Two pathways can

account for the generation of ATP in mammalian spermatozoa, glycolysis and mitochondrial respiration. As mitochondrial

OXPHOS is much more efficient than glycolysis in generating ATP, it has been widely accepted that the ATP needed for

sperm motility is synthesized by mitochondrial respiration. 

In mammalian spermatozoa, mitochondria rearrange in tubular structures that are helically distributed around the anterior

portion of the axoneme, constituting the midpiece [14,15]. As the sperm flagellum is long and thin and mitochondria are

confined in its proximal end, the question has been raised as to whether OXPHOS-derived ATP can passively diffuse

through the entire flagellum to efficiently support axoneme activity. In sea urchin sperm, a shuttle mechanism to facilitate

the ATP diffusion along the flagellum is provided by the creatine phosphate (CrP) that buffers the ATP/adenosine

diphosphate (ADP) ratio at the expense of CrP/creatine [16]. However, mammalian spermatozoa lack or contain only low
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amounts of CrP or other phosphagens [17,18], making it unlikely that the CrP shuttle plays a major role in providing ATP

from mitochondria to the axoneme. Indeed, spermatozoa from knockout mouse models where the gene for the

mitochondrial isotype of creatine kinase had been inactivated exhibited similar motility patterns to the wild-type controls

[19]. These legitimate considerations shifted the focus from OXPHOS to glycolysis.

Although mitochondrial respiration is more efficient than glycolysis in generating ATP molecules, key enzymes of

glycolysis are tethered to the fibrous sheath of the principal piece [20,21,22,23], and hence they might assure an efficient

production of ATP for dynein ATPase locally in the entire length of the flagellum. Consistent with this view, in mouse [3],

bovine [24] and human spermatozoa [5,6,7], motility was not affected by mitochondrial inhibition when glucose was

available in the extracell ular medium. We previously demonstrated that in a medium lacking glycolysable sugars, the

presence of substrates for OXPHOS such as pyruvate and lactate fully supported the motility of human spermatozoa [7].

Interestingly, under such experimental conditions, the addition of 2-Deoxy-D-glucose (DOG), which inhibits glycolysis by

competing with glucose for key enzymes, significantly decreased sperm motility [7]. This evidence was incompatible with

the hypothesis that ATP is synthesized in mitochondria and then provided to the entire axoneme by diffusion.

On the contrary, these findings supported the notion that ATP produced by OXPHOS is used to drive gluconeogenesis

and thus to supply glucose to glycolytic enzymes for ATP production in the principal piece.

In this light, glycolysis would compensate for any lack of ATP production by mitochondria in maintaining sperm motility,

and mitochondrial OXPHOS inhibition could depress motility only under experimental conditions of concomitant glycolysis

blockage. However, differences among the species exist, as stallion spermatozoa rely primarily on mitochondrial

respiration to generate energy required for motility [25]. Overall, it is conceivable that both glycolysis and OXPHOS

contribute to ATP production, depending on each other in controlling sperm functions according to the different availability

of energetic substrates in the environment [4]. Of note, in female genital tract fluids, the concentrations of lactate are

higher than those of glycolysable substrates [26,27,28,29], suggesting a possible major role of mitochondrial respiration in

supporting sperm motility. This hypothesis could explain why spermatozoa retain a high number of mitochondria during

their differentiation, despite the dramatical decrease in the cellular volume resulting from the removal of any unnecessary

structure. Anyway, an obligatory role for glycolysis seems to be confirmed by the loss of progressive motility in

spermatozoa of mouse models where the gene for sperm-specific glyceraldehyde-3-phosphate dehydrogenases had

been knocked out [4]. In this view, the reported correlation of the mitochondrial membrane potential (∆Ψm) [30] or

mitochondrial morphologic integrity [31] with the motility of ejaculated spermatozoa cannot be explained convincingly by

an impaired mitochondrial ATP generation only.

Noteworthy, in human spermatozoa, a mitochondrial dysfunction could affect motility when it is accompanied by an

intrinsic generation of ROS. Oxidative stress, indeed, is responsible for membrane lipid peroxidation [5,32] and promotes

the activation of mitochondrial pathways resulting in apoptosis-like changes.

3. Biochemistry of Reactive Oxygen Species: An Overview

Reactive oxygen species represent a widespread group of molecules that include free radicals and peroxides, produced

from the metabolism of oxygen (Figure 1).

Figure 1. Biochemical overview of reactive oxygen species (ROS) and their generating reactions. The metabolism of

oxygen generates a widespread group of molecules, comprehensively called ROS, that include free radicals and

peroxides. The principal form of ROS is the superoxide anion radical (O ), which can be generated by univalent

reduction of oxygen (O ) through the mitochondrial electron transport chain. The radical O  is converted into hydrogen
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peroxide (H O ) according to two different pathways: in the first pathway, superoxide dismutase (SOD) catalyzes the

production of H O  and O   the second pathway involves the bivalent reduction of O . The Haber–Weiss reaction

between H O  and O  generates the hydroxyl radical (OH) and O . Finally, in the Fenton reaction, H O  decomposes

into OH in the presence of ferrous ion.

Examples of non-radical ROS include hydrogen peroxide (H O ), while superoxide anion (O ), the hydroxyl radical (OH)

and the hydroperoxyl radical (HO ) are free radicals, where an oxygen molecule contains one or more unpaired electrons

in its molecular orbital . Other powerful oxidants also include molecules derived from the reaction of oxygen with

carbon-centered radicals, such as peroxyl radicals (ROO), organic hydroperoxides (ROOH) and alkoxyl radicals (RO) .

In particular, O  represents the principal form of ROS that can be accidentally generated by univalent reduction of

oxygen through the mitochondrial ETC . It can react with biological tissues, but its toxicity is low and widely related to

its conversion into H O , according to different pathways (Figure 1): the first one is the reaction catalyzed by superoxide

dismutase (SOD), producing H O  and oxygen; the second pathway is the bivalent reduction of oxygen . A reaction

between H O  and O  generates OH, which may also originate from H O  in the presence of a ferrous ion promoter by

the Fenton reaction .

4. Origin of ROS in Semen

Within semen, ROS can be generated by two main sources: leukocytes (extrinsic ROS) and spermatozoa themselves

(intrinsic ROS) .

Almost every semen sample contains leukocytes, particularly macrophages and neutrophils . Seminal leukocytes have

the potential to promote oxidative stress since they destroy pathogens mainly generating ROS. Although seminal white

cells produce ROS with a rate 1000 times higher than spermatozoa , subclinical concentrations (<1 × 10 /mL) of

seminal leukocytes seem to not be harmful to sperm quality . This may be because seminal neutrophils originate from

secondary sexual glands; therefore, they make contact with sperm only at the ejaculation time, when antioxidant factors of

seminal plasma can preserve spermatozoa from oxidative damage. Indeed, even the association of leukocytospermia (≥1

× 10  white cells/mL of semen) with male fertility is still under debate. In a recent meta-analysis of case–control studies,

we recently demonstrated that in men seeking consultation for couple subfertility, the presence of leukocytospermia is not

associated with poorer outcomes of assisted reproductive technology (ART) or poorer semen quality in populations

asymptomatic for genital tract infections .

Spermatozoa themselves represent another source of ROS (Figure 2). They exhibit both the mitochondrial nicotinamide

adenine dinucleotide (NAD)-dependent oxidoreductase  and the membrane calcium-dependent NAD phosphate

(NADP) oxidase (NOX5) system . The latter generates small and controlled amounts of O , playing a role in

controlling human sperm motility under physiological conditions . Immature teratozoospermic spermatozoa often

display cytoplasmic droplets that are rich in glucose-6-phosphate dehydrogenase (G PD), an enzyme involved in the

intracellular production of the reduced form of NADP (NADPH). Therefore, it has been hypothesized that retention of the

residual cytoplasm by spermatozoa is positively correlated with ROS generation via mechanisms that could be mediated

by G6PD activity (Figure 2) . Cytoplasmic droplets also contain SOD and lactic acid dehydrogenase : SOD

generates H O  from O ; meanwhile, lactic acid dehydrogenase produces the reduced form of NAD (NADH). The

oxidation of NADH at the mitochondrial complex I activates the ETC, ultimately leading to the bivalent reduction of oxygen

and ATP generation . The ETC is composed of respiratory enzyme complexes organized in the inner mitochondrial

membrane and includes: NADH-dehydrogenase (complex I), succinate dehydrogenase (complex II), cytochrome bc1

(complex III) and cytochrome oxidase (complex IV). Within mitochondria, 1–2% of the oxygen reduced during OXPHOS

undergoes an univalent reduction, thus generating O  . O  can be metabolized by spontaneous dismutation or by

mitochondrial SOD in H O  or can readily move into the cytoplasm via voltage-dependent anion channels . However,

an upstream increase in the synthesis of NADH by the lactic acid dehydrogenase (e.g., in the presence of a cytoplasmic

droplet) can overload ETC complex I, thus increasing the rate of O  generation. Actually, dysfunctional mitochondria of

defective spermatozoa from infertile men can display high rates of univalent oxygen reduction, resulting in O

generation, irrespective of the pathways related to the retention of the residual cytoplasm. The principal sites of

mitochondrial ROS production are complex I and complex III, where electrons can directly react with oxygen or other

electron acceptors . The radical O  which is generated by complex III is released in the intermembrane space where it

is rapidly dismutated to H O  in the cytoplasm (Figure 2), thus escaping to the extracellular space . On the contrary,

O  generated by complex I is directly released into the mitochondrial matrix (Figure 2), where the escape is hindered:

when the production of O  in the mitochondrial matrix had overwhelmed the intramitochondrial antioxidant defenses,

oxidative stress occurred . The mitochondrial generation of O  can be revealed using MitoSOX-Red, a lipid-soluble
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cation that selectively targets mitochondria: it is rapidly oxidized by O  only and fluoresces red upon binding to nucleic

acid .

Figure 2. Schematic model for the origin of reactive oxygen species (ROS) in human spermatozoa. Cytoplasmic droplets

of immature teratozoospermic spermatozoa are rich in glucose-6-phosphate dehydrogenase (G PD), an enzyme involved

in the intracellular production of the reduced form of nicotinamide adenine dinucleotide (NAD) phosphate (NADPH), which

could represent the substrate for the generation of the superoxide anion radical (O ) by NADPH oxidase systems

(NADPH Ox). Superoxide dismutase (SOD) and lactic acid dehydrogenase are also present in cytoplasmic droplets. While

the former generates H O  from O , the latter produces the reduced form of NAD (NADH), which undergoes oxidation

by mitochondrial complex I. Within mitochondria, a small amount of the oxygen (O ) reduced during mitochondrial

oxidative phosphorylation (OXPHOS) undergoes univalent reduction, thus generating O . This radical can be

metabolized by spontaneous or SOD-mediated dismutation in H O  or can readily move into the cytoplasm via voltage-

dependent anion channels. However, an increased NADH synthesis by the lactic acid dehydrogenase (e.g., in the

presence of a cytoplasmic droplet) can overcharge complex I, raising the rate of O  generation. Dysfunctional

mitochondria of defective sperm from infertile men can display high rates of univalent O  reduction, resulting in high rates

of O  generation, irrespective of the presence of cytoplasmic droplets (see the text for details). In complex I and

complex III, electrons can directly react with O : while O  generated by complex III is released in the intermembrane

space and rapidly dismutated to H O  in the cytoplasm, complex I generates O  that is directly released into the

mitochondrial matrix, thus hindering the escape and promoting oxidative stress.

Mitochondria-generated ROS trigger lipid peroxidation, which can be assessed at flow cytometry by BODIPY C . This

probe is readily incorporated into biologic sperm membranes and responds to free radical attack with a spectral emission

shift from red to green . Lipid peroxidation reactions culminate in the generation of aldehydes, which can covalently

bind cysteine, lysine and histidine residues on target mitochondrial proteins . These adducts dysregulate the electron

flow through the ETC, further increasing the rate of O  generation in a self-perpetuating cycle . An interesting

mechanism underlying pro-oxidative mitochondrial dysfunction involves the inhibition of key enzymatic antioxidants

termed peroxiredoxins (PRDXs). PRDXs display efficient scavenging activities against a wide variety of ROS  and

represent a major first-line defense of human spermatozoa against oxidative stress . Although PRDXs are largely

distributed in seminal plasma as well as in all subcellular sperm compartments , spermatozoa from infertile men exhibit

lower amounts of PRDX1 and PRDX6 with a relatively high degree of thiol oxidation  which inhibits PRDX activities 

. In particular, the inhibition of the calcium-independent phospholipase A  (Ca -iPLA ) activity of PRDX6

promotes a dysregulation of mitochondrial function accompanied by an increased mitochondrial generation of O  .

The resultant high levels of 4-Hydroxynonenal (4HNE), an end product of lipid peroxidation, will further contribute to

mitochondrial dysfunction, ultimately leading to DNA oxidation, as revealed by the generation of the oxidized base adduct

8-hydroxy-2′-deoxyguanosine (8-OHdG) .

Of note, a complex bidirectional relationship could exist between ROS generation and the activation of intrinsic

(mitochondrial) apoptosis-like pathways that synergize with oxidative stress in impairing sperm biological integrity and

functions.

5. Mitochondria as an Interplay Center between Oxidative Stress and
Apoptotic Events

In somatic cells, the mitochondrial (intrinsic) pathway of apoptosis is triggered by proapoptotic BH3 proteins, which can be

activated by noxious stimuli, including ROS, γ radiations and DNA injuries . These proteins inhibit antiapoptotic BCL2-
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BCL-XL, thus alleviating the inhibition of proapoptotic factors BAX and BAK. The BAX/BAK-mediated increase in

mitochondrial permeabilization results in the loss of ΔΨm and cytochrome c release from the inter-mitochondrial

membrane space into the cytosol . The cytochrome c release leads to the activation of caspase 9 through the

apoptosome . Activated caspase 9 ultimately activates caspase 3, the downstream “executioner” caspase, a protease

that promotes both the cleavage of cytoskeletal proteins and the activation of DNases .

Interestingly, apoptosis-like features can be induced also in human spermatozoa by exposure to a variety of non-receptor-

mediated stimuli, ultimately leading to oxidative stress, including cryostorage , exposure to radiofrequency

electromagnetic radiation  and direct addition of H O  . It has been demonstrated that a key event promoting this

truncated (mitochondrial) apoptotic cascade would be the inhibition of the phosphoinositide 3-kinase (PI3K) signaling

pathway . This finding extends the spectrum of the PDXs tasks to the apoptosis control, as PDX6 Ca -iPLA  activity

plays a pivotal role in maintaining the phosphorylated (active) status of PI3K, thus preserving sperm survival .

Noteworthy, while ROS can be considered a trigger for the mitochondrial pathway of apoptosis, at the same time, the

latter is associated with oxidative stress, consequently establishing a vicious cycle. As demonstrated in human somatic

cell lines, the release of cytochrome c into the cytosol represents a pro-oxidative event because it is associated with ETC

disruption, leading to increased O  generation . This might explain the concomitant occurrence of mitochondrial ROS

generation and caspase-9-related apoptosis-like changes in human sperm under certain experimental conditions

promoting the loss of ΔΨm .

6. Pathophysiology of Oxidative Stress in Human Spermatozoa

Low levels of ROS are normally produced by human spermatozoa and are involved in sperm physiological processes,

such as tyrosine phosphorylation and sperm hyperactivation during capacitation, acrosome reaction and sperm–oocyte

interactions . Nevertheless, an abnormal and uncontrolled increase in ROS generation exerts detrimental effects

on sperm biology, resulting in membrane and genomic damages .

Among free radicals, OH is the most reactive molecule due to its unpaired electron, leading to the oxidation of lipids in

biological membranes, amino acids in proteins and carbohydrates within nucleic acids. Membrane lipid peroxidation is

initiated by the abstraction of a hydrogen atom from membrane fatty acids, resulting in the generation of a carbon-

centered radical which rapidly reacts with oxygen. The resulting lipid peroxyl radical, in order to stabilize, abstracts a

hydrogen atom from an adjacent fatty acid, generating another carbon-centered radical, which propagates the chain

reaction within the membrane. This process produces cytotoxic adducts, such as malondialdehyde, acrolein and 4HNE,

affecting membrane fluidity and fusogenicity, which are required for motility, acrosomal exocytosis and sperm–oocyte

interaction . Moreover, a self-perpetuating cycle of ROS production is triggered when lipid aldehydes bind to

mitochondrial ETC proteins . Although intracytoplasmic sperm injection (ICSI) can overcome the consequences of

membrane damages, the oxidation of purine and pyrimidine bases and the deoxyribose backbone impairs sperm DNA

integrity, compromising both the viability of and paternal genomic contribution to the embryo . In particular, ROS

delivered from sperm mitochondria can rapidly move from the midpiece to the sperm head, thus oxidizing the DNA.

Indeed, human spermatozoa are particularly vulnerable to oxidative stress due to the cellular organization and

biochemical factors. The high content of polyunsaturated fatty acids (PUFA) in the sperm membrane increases the

susceptibility to membrane lipid peroxidation. Polyunsaturated fatty acids are involved in maintaining the physiological

fluidity and fusogenicity of sperm membranes, but, unfortunately, PUFA are also particularly vulnerable to free radical

attack because of the lowest carbon–hydrogen dissociation energies at the bisallylic methylene position. During

spermatogenesis, spermatozoa lose most of their cytoplasm that in somatic cells contains efficient antioxidant enzymes

. Although seminal plasma and all subcellular sperm compartments contain PRDXs, ensuring an effective first-

line defense against ROS , spermatozoa from infertile men display lower amounts of PRDX1 and PRDX6 with a

relatively high degree of thiol oxidation . Seminal plasma also contains several non-enzymatic antioxidant factors,

including ascorbic acid, glutathione, albumin, α-tocopherol, carnitine, amino acids, flavonoids and carotenoids , that

can execute their activity by two main mechanisms. First, they can chemically neutralize free radical activity in a direct

way; secondly, they can become oxidized themselves, like albumin . Moreover, metal chelators of seminal plasma,

such as lactoferrin, transferrin and ceruloplasmin, are also able to block the ROS generation . However, during the

epididymal transit and within the female genital tract, spermatozoa have no contact with seminal plasma and its

antioxidant factors: this could make sperm more vulnerable to oxidative stress damages, especially in the presence of

genital tract infections.
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7. Conclusions
The notion that mitochondria represent the motor of mammalian spermatozoa is  changing in the light of increasing

evidence pointing to glycolysis as the preferred metabolic pathway for the energetic support of sperm motility in many

species. Available data indicate that both glycolysis and mitochondrial respiration would contribute to ATP production,

depending on each other in controlling sperm functions according to the availability of environmental energetic substrates.

However, irrespective of the metabolic reflections, dysfunctional mitochondria would play a pivotal role in influencing

sperm survival, representing the key cellular organelles for the interplay between ROS generation and intrinsic apoptosis-

like events. A better understanding of these processes could represent the basis for developing mitochondria-centered

antioxidant molecules to improve sperm functions and male reproductive potential.
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