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The pyridoxal phosphate-binding protein (PLPBP) family (also termed ProsC/PROSC or COG0325 family)
members are found in all kingdoms of life, exemplified by the proteins YBLO36C (yeast), YggS (Gram-negative
bacteria), YImE (Gram-positive bacteria), PipY (cyanobacteria), PLPHP (humans) and HTH5 (rice).

cyanobacteria nitrogen regulation COG0325 PLPHP PLPBP

| 1. Introduction

Cyanobacteria, phototrophic organisms performing oxygenic photosynthesis, constitute an ecologically and
biotechnologically important phylum, responsible for the evolution of the oxygenic atmosphere, being the main
contributors to marine primary production . Their photosynthetic lifestyle and ease of cultivation make them ideal
production systems for several high-value compounds, including biofuels [2. Despite important breakthroughs in
the genetic analysis of cyanobacteria, there is still a remarkable proportion of genes of unknown function in this

phylum, many of which are presumably relevant to the biology of cyanobacteria.

The cyanobacterium Synechococcus elongatus PCC7942 (hereafter S. elongatus), the only photosynthetic
organism for which the contribution of each gene to fithess has been evaluated so far 2], is being used as a model
system to address fundamental questions concerning the photosynthetic lifestyle. More recently, the S. elongatus
genome has been used as the reference organism to create a database for the Cyanobacterial-Linked Genome 4],
accessible through an interactive platform “https://dfgm.ua.es/es/cyanobacterial-genetics/dclg/index.htm (accesed
on 1 August 2022)".

In bacteria and plants, 2-oxoglutarate (2-OG), a key metabolic signal of the intracellular carbon-to-nitrogen
balance, is sensed by the highly conserved and widely distributed signal transduction protein PII. Pl regulates the
activity of proteins involved in nitrogen metabolism by direct protein—protein interactions Bl In S. elongatus PII
interacts with a small (89 residues) protein called PipX (Pll-interacting protein X), which was initially identified in

yeast two-hybrid analyses [EI[Z],

PipX was also found in searches for proteins interacting with NtcA, the global transcriptional regulator involved in
nitrogen assimilation in cyanobacteria 8. PipX stabilizes the conformation of NtcA which is transcriptionally active
and probably helps the local recruitment of RNA polymerase to NtcA-dependent promoters &l At low 2-OG

concentrations corresponding to nitrogen-excess conditions, the sequestration of PipX by PIl renders PipX
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unavailable for NtcA binding and activation, reducing the expression of NtcA-dependent gene targets [JILOI11]12][13]
Partner swapping by PipX is enabled by its N-terminal Tudor-like domain (TLD/KOW), which provides contacts for
both NtcA and PIl. Complex formation with PipX increases the affinity of PIl for ADP [ and, conversely, the
interaction between PIl and PipX is highly sensitive to fluctuations in the ATP/ADP ratio 24!, Thus, PipX partner
swapping between PIl and NtcA integrates signaling of the carbon-to-nitrogen ratio and the energy status by PII

with the regulation of nitrogen-responsive genes controlled by NtcA [LQI[L5](16]

Interestingly, a high PipX/Pll ratio prevents growth 17 and, consistent with this, cyanobacterial genomes always
contain at least as many copies of ginB as of pipX 18, suggesting that a relatively high ratio of PIl over PipX is

required to counteract unwanted interactions with low-affinity PipX partners.

In S. elongatus pipX is co-transcribed with the downstream gene pipY. This last gene belongs to the widely
distributed and highly conserved pyridoxal phosphate (PLP)-binding protein (COG0325/PLPBP) family that is
involved in vitamin Bg and amino acid homeostasis 2. The PLPBP family (also termed ProsC/PROSC or
COGO0325 family) members are found in all kingdoms of life, exemplified by the proteins YBL0O36C (yeast), YggS
(Gram-negative bacteria), YImE (Gram-positive bacteria), PipY (cyanobacteria), PLPHP (humans) and HTHS5 (rice).
These are all single-domain proteins exhibiting the fold type Ill of PLP-holoenzymes [29[211122][231[24] yijth no known

enzymatic activity.

| 2. Structural and Functional Features of PLPBPs
2.1. PLP Is Solvent-Exposed in PLPBP Structures

The vitamin Bg vitamer PLP is used as a cofactor for enzyme-catalyzed reactions which include transamination,
decarboxylation, racemization, aldol cleavage, or replacement reactions among others 22, Since amino acid
metabolism and other essential processes require PLP-dependent enzymes 281271 PP availability is of paramount
importance to supply cofactors to activate newly synthesized apo-Bg enzymes. PLP is also required as a cofactor
of glycogen phosphorylase 28 and certain transcriptional factors and regulators 22, However, its aldehyde group
endows PLP with high chemical reactivity, sometimes causing the inactivation of proteins (see for example, [22),
and therefore additional mechanisms are required for keeping the levels of free PLP low in cells and tissues. In the
first report of a member of this family, Eswaramoorthy et al. (2003) documented structural parallelisms between the
yeast protein YBLO36C and the N-terminal domain of alanine racemases, leading them to infer (and even to
provide some experimental hints for it) that PLPBP had alanine racemase activity 2. However, no amino acid
racemase, decarboxylase, deaminase, or transaminase activities were found for E. coli or human proteins B9, and
although crystal structures of alanine racemase with bound substrates (D-ala) or inhibitors (D-cycloserine) have
been determined 311, extensive crystallization attempts with these molecules did not detect any binding to PipY 22,
Furthermore, in vivo work did not support alanine racemase activity for S. elongatus PipY 2. Therefore, despite
the key importance of the PLP cofactor for PLPBP function (see below), PLP appears to have no catalytic function
in the PLPBP family.
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Structures of six PLPBP members have been determined and deposited in the Protein DataBank (PDB,
“https://www.rcsb.org/ (accesed on 1 September 2022)") (Table 1). All of these structures correspond to single-

domain chains folded according to the triose phosphate isomerase (TIM) barrel typically found in the fold type Il of

PLP-dependent enzymes. The only ones reported to date from a eukaryotic organism correspond to yeast protein
YBLO36C. The others are from a Gram-positive bacterium (Bifidobacterium adolescentis), and four Gram-negative
bacteria including the cyanobacterium S. elongatus (Table 1). S. elongatus PipY structures with and without PLP
offer high resolution and have been used to estimate the effects of clinical missense mutations found in the PLPBP
human gene in patients with vitamin Bg-dependent epilepsy 221123 Here, researchers use PipY as a reference for
the additional discussion on structural and functional details concerning studied members of the protein family.
Figure 1 shows the structure of PipY containing PLP (PDB file 5NM8).

194 M113

KRN 4« 5 ¢ 7 NeVEN

Variable Average Conserved

Figure 1. Structure of PipY from S. elongatus (PDB 5NM8) colored for the evolutionary conservation of residues
among PLPBP homologs, and mapping therein, residues targeted by missense mutations. The structure is in a
cartoon representation except for the PLP, which is in a stick representation with C, O, N, and P atoms in yellow,
red, blue, and orange, respectively. Color-coding of the structure from cyan to magenta according to the residue
conservation score (the higher, the more conserved) given by The ConSurf Server “URL
https://consurf.tau.ac.il/consurf_index.php (accesed on 3 August 2022) when queried with chain A of the PDB

5NMS8, with default parameters. Spheres mark the location in PipY of known human PLPHP mutations (see Table

2). Residue numbers are given in one letter code, in black for S. elongatus, and shown in red, green, and blue, the
human mutations causing vitamin Bg-dependent epilepsy, and the in vitro mutations obtained in the corresponding

proteins of F. nucleatum, and E. coli, respectively.

Table 1. Structures of COG0325/PLPB family proteins were determined and deposited in the Protein DataBank
(PDB).
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PDB Resolut.Deposition

Organism Protein Vitamer Ligands  Amino Acid Changes A) Ref.

File Year
Escherichia coli YggS 1wW8G PLP Isocitrate None 2.00 2004 -
MES L32V/G56S/N58H/H81N/
3SY1 PLP Acetate 1I83A/H1021/M165S/S202A/ 1.47 2011 -
M205Q/R221A hexamutant
7UBQ PNP* None None 2.60 2022 —
7UB4 PLP None K36A/K38A/K233A/K234 2.40 2022 -
TUAX None PO4H3 K36A/K38A 2.07 2022 -
7U9H None SO4H, None 2.00 2022 -
7UBP PLP SO4H, K36A/K137A 2.30 2022 -
7UB8 PLP Butanediol K38A/K137A/K233A/K234A 2.30 2022 -
7TUAU PLP SO4H, K137A 2.10 2022 -
7UAT  PLP PO4H; K36A 2.00 2022 -
7U9C  PLP PO,H; None 2.10 2022 -
Bifidobacterium v 05 3cPG  PLP  Acetate Se-Met ** 171 2008 -
adolescentis
' Acetate
Agrobacterium a4 3r79  PLP = Se-Met ** 1.90 2011 -
tumefaciens Pr

PipY 5NLC  None PO4H; None 1.90 2017 22)

Synechococcus
elongatus 5NM8  PLP ca?* None 1.93 2017 &
YggS 7F8E  None SO H, Se-Met ** 2.08 2021 -
AR 6KZW None  PO,Hs TSAIN202S, Se-Met ** 2.08 2019 -

nucleatum

7YGF Structure not released 2.08 2022 [24]
YBLO36C 1CT5 PLP None Se-Met ** 2.00 1999 (21]

Saccharomyces
cerevisiae 1B54  PLP None None 2.10 1999 24

The TIM-barrel fold, initially described for triosephosphate isomerase 22, is a highly widespread protein fold,
generally reported as consisting of eight a helices that alternate with parallel B strands of a circularly closed -
sheet, in which the helices encircle the sheet (reviewed in 23). The TIM-barrel of PLP proteins, first described for
alanine racemase [B, characterizes the fold type Il of PLP-dependent enzymes and presents an extra N-terminal
a helix prec%gi}ﬁ@dﬁfgqﬁéq'm%ogﬂﬁt é’&“ﬂ&b@%?‘ﬁ6%%@8?,%%8%@%‘8&H88i‘f‘ﬁwﬂﬁﬁeﬁ‘% %\éﬂlﬁ?lg'two—domain
subunit forming homodimers in alanine racemase, ornithine decarboxylase, and the broad specificity amino acid
racemase [29[23l34] P PBP members are single-domain proteins that appear to be mainly monomers (but see
discussion below) ([21l22l: and other PDBs in Table 1).
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While PLP is found in PLPBP structures in the same location that it is found in the fold type Il of PLP enzymes, in
all PLPBP structures the PLP cofactor is solvent-exposed and highly accessible, thus being appropriately
positioned for a role of PLPBP as a PLP delivering device in cells. In this context, the role of the C-terminal a helix
(helix 9) of PipY in anchoring the phosphate of PLP, and the relatively large changes in helix 9 orientation
depending on the presence or absence of PLP have led to the hypothesizing 22 that this helix may have a role in
being a trigger for the binding and release of PLP (Figure 2).

PipY-PLP

Figure 2. PipY structures with and without PLP illustrate the two positions of helix 9. Cartoon representation of
PipY structure from S. elongatus complexed with PLP (PDB 5NM8) and PipY-Apo form (PBD 5NLC), with a-helix 9
shown in blue and green, respectively. Inset: Displacement of a-helix 9 observed in the PLP-containing form is
highlighted by superimposing both protein forms. The PLP molecule is illustrated using stick representation, where

C, O, N, and P atoms are colored yellow, red, blue, and orange, respectively.

The available data so far suggest that the proteins of this family might act as PLP carriers which supply the
cofactor to PLP-dependent enzymes, shielding this cofactor from unwanted reactions with other molecules,

although this has not been strictly proven and the mechanisms involved remain unclarified.

2.2. Dimerization of Just Some PLPBP Family Members?

While all available crystal structures are consistent with PLPBP family members being monomers, size-exclusion
chromatography of human PLPHP, performed in two different studies [23I23] revealed a second peak corresponding
to dimers. In 23], the minor peak was shown to depend on disulfide bridges, a result interpreted as PLPHP being
mainly monomeric with the possibility of stable dimerization via the formation of a disulfide bridge between exposed
cysteines. Consistent with this, human mutation Tyr69Cys increased dimer formation (Table 2). However, Fux and
Sieber 23 challenged this view, reporting that their PLPHP preparation was predominantly dimeric even under
reducing conditions 3. They also suggested that discrepancies with the previous work may be due to differences
in expression strains or purification strategies. It is worth noting that while the human protein contains five cysteine
residues, the amino acid chains of S. elongatus PipY and E. coli YggS have just one or two cysteines, respectively,

and thus they would be less prone to making disulfide bonds under oxidative conditions.

Table 2. Missense mutations reported in human PLPHP associated with vitamin B6-dependent epilepsy, as well as

two experimental mutations in orthologous bacterial proteins. Molecular mechanisms of damage.
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