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Adenosine is a signalling molecule which, by activating specific membrane receptors, acts as an important player during

brain insults such as ischemia. or demyelinating injuries. Here we review data in the literature describing A2B receptor-

mediated effects in preclinical in vitro and in vivo models of cerebral ischemia and myelination that point to A2B receptor

ligands as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.
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1. Introduction

Adenosine acts through the activation of four different purinergic P1 receptors: A , A , A , and A  adenosine receptors

(A Rs, A Rs, A Rs, and A Rs, respectively), all belonging to the G-protein coupled, metabotropic receptor family .

The most widely recognized adenosine signaling is through the activation of A Rs, which inhibits adenylyl cyclase (AC)

through G  protein activation . A Rs are dominant in the central nervous system (CNS), where they inhibit

neurotransmission and mediate sedative, anticonvulsant, anxiolytic, and locomotor depressant effects .

The A R subtype is known to stimulate AC  being coupled to G  proteins . At central level, the functional effect of

A R activation is at variance from A Rs, as they are reported to enhance glutamate release .  In the periphery, A Rs

are highly expressed in inflammatory cells including lymphocytes, granulocytes, and monocytes/macrophages, where

their activation reduces pro-inflammatory cytokine production, i.e., tumor necrosis factor-alpha (TNFα), interleukin-1β (IL-1

β), and IL-6  and enhances the release of anti-inflammatory mediators, such as IL-10 .

The relatively new A R subtype is coupled to G  proteins and inhibits AC but, under particular conditions or in different

cell types, activation of G  by A R agonists has also been reported . Most of the cell types of the immune system

express functional A Rs on their surface  and its activation is one of the most powerful stimuli for mast cell

degranulation.

2. A  Adenosine Receptors (A Rs)

This adenosine receptor subtype is somewhat the most enigmatic and less studied among the four P1 receptors. Although

it was cloned in 1995 , a pharmacological and physiological characterization of A Rs has long been precluded by the

lack of suitable ligands able to discriminate among the other adenosine receptor subtypes .

The distribution of A Rs in the CNS on neurons and glia is scarce but widespread, whereas in the periphery, abundant

expression of A Rs is observed in the bronchial epithelium, vascular beds, smooth muscles, mast cells, monocytes, and

digestive tracts such as ileum and colon . The activation of A Rs stimulates G  and, in some cases, G  proteins, thus

enhancing intracellular [cAMP] or [IP ], respectively . As mentioned above for the cognate A R subtype, in addition to

brain cells and endothelial cells, A Rs are present on hematic cells, such as lymphocytes and neutrophils, with the

highest expression levels on macrophages . Here, A  receptors in most cases are coexpressed with A Rs and their

activation exerts anti-inflammatory effects, inhibiting vascular adhesion and migration of inflammatory cells .

Differently from the high affinity A Rs, A Rs and A Rs, which are activated by physiological levels of extracellular

adenosine (low nM and high nM, respectively ), the A R needs much higher adenosine concentrations (in the µM

range) reached only in conditions of tissue damage or injury. Such a low affinity of A Rs for the endogenous agonist

implies that they represent a good therapeutic target, since they are activated only by high adenosine efflux reached

under pathological conditions or injury, when a massive release of adenosine occurs .
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3. A Rs and Oligodendrogliogenesis

We recently and originally demonstrated that A Rs are crucially involved in oligodendrocyte progenitor cell (OPC)

maturation. We found that the selective A R agonists BAY60-6582 (10 μM) and P453 (500 nM) inhibited the

differentiation of purified primary OPC cultures, as demonstrated by the reduced expression of myelin basic protein (MBP)

and myelin associated glycoprotein (MAG). We also demonstrated that A R activation reversibly inhibits

tetraethylammonium- (TEA-) sensitive, sustained I , and 4-amynopyridine- (4-AP) sensitive, transient I , conductances

. As I  are known to be necessary to OPC maturation , this could be one of the mechanisms by which A Rs inhibit

myelin production. These results are similar to what was observed in cultured OPCs exposed to the A R agonist

CGS21680, as demonstrated by us in a previous work .

4. A Rs and brain ischemia

Brain ischemia results from a permanent or transient reduction in cerebral blood flow mostly due to the occlusion of a

brain artery. The consequent reduction of blood and/or oxygen supply to the brain leads to neuronal death caused by

excessive glutamate release . This early excitotoxic damage is followed by a secondary chronic phase of

neuroinflammation that develops hours and days after ischemia. During stroke, adenosine is released in massive amounts

. The block of A Rs is neuroprotective as it counteracts glutamate overload by preserving the inhibitory role of A Rs

on neurotransmission , as demonstrated by us in an in vitro model of brain ischemia reproduced in rat

hippocampal slices by oxygen and glucose deprivation (OGD) . The selective A2BR antagonists PSB-603 (50 nM) and

by MRS1754 (200 nM) prevents irreversible synaptic failure and anoxic depolarization (AD) appearance produced by a

severe, 7 min, OGD event in CA1 hippocampal slices .

However, beyond neuroprotection exerted by A R antagonists acting at the neuro-glial level, evidence in the literature

points to a beneficial role exerted by A R agonists acting on the same receptor subtype expressed on blood vessels and

inflammatory cells . Indeed, post-treatment with intravenous BAY60-6583 (1 mg/kg) reduces lesion volume and

attenuates brain swelling and blood–brain barrier disruption at 24 h after ischemia induced by transient (2 h) middle

cerebral artery occlusion (tMCAo) . Additionally, in the same work, BAY60-6583 mitigates sensorimotor deficits in the

presence of tPA and inhibits tPA-enhanced matrix metalloprotease-9 activation, thus decreasing BBB permeability 24 h

after ischemia .

Our group of research contributed to the field by demonstrating that the chronic treatment with BAY60-6583, administered

intraperitoneally twice/day for 7 days at the dose of 0.1 mg/kg, from 4 h after focal ischemia induced by tMCAo, since one

day after ischemia protects from neurological deficit. Seven days after ischemia it protects from ischemic brain damage,

neuronal death, microglia activation, and astrocyte alteration . Interestingly, in the same paper, it was demonstrated

that, 7 days after ischemia, the A  agonist decreases TNF-α and increases IL-10 levels in the blood. 

5. A Rs and demyelinating diseases

Demyelination occurs in a variety of pathological conditions affecting central or peripheral nervous systems. As an

example, myelin disorganization in caudate/putamen striatal nuclei have been reported by us   and others .

Furthermore, chronic demyelinating diseases, such as multiple sclerosis (MS), are highly invalidating pathologies with

elevated incidence among the “under 40” population worldwide , but an efficacious therapy is still lacking.

crucial role of adenosine, and in particular of A R and/or A R subtypes, in demyelinating pathologies have been

postulated.

Under these conditions, excessive signaling by excitatory neurotransmitters like glutamate may be deleterious to neurons

and oligodendroglia by exacerbating excitotoxicity and contributing to brain injury. For this reason, the inhibitory effect on

glutamate release described above for antagonists at both A R subtypes could prove protective. This was indeed the

case, as demonstrated by Chen and colleagues  and by Wei and co-workers  who reported that A R and A R

antagonists, respectively, alleviated the clinical symptoms of EAE and prevented demyelination and CNS damage. Recent

data by Liu and co-workers  confirmed that A R activation seems to participate in EAE-induced damage as BAY60-

6583 reverted the protective effects, i.e., reduced inflammatory cell infiltration and demyelination, exerted by

mesenchymal stem cell therapy in EAE mice. Of note, the above results demonstrating a deleterious role of A Rs in

demyelinating diseases are in agreement with our in vitro data demonstrating that A R blockade , as well as A R

antagonism , facilitates OPC differentiation in vitro.
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However, things are probably more complicated as suggested by the fact that, again, A R-mediated actions are mainly

anti-inflammatory when observed in a longer time-span. Indeed, genetically modified A R  EAE mice are more prone to

EAE-induced damage , and the A R agonist CGS61680 ameliorates EAE by reducing Th1 lymphocyte activation and

cytokine-induced BBB dysfunction .

6. Conclusions

In conclusion, results underlie that after hypoxia/ischemia, brain injury results from a complex sequence of

pathophysiological events that evolve over time—a primary acute mechanism of excitotoxicity and periinfarct

depolarizations followed by a secondary brain injury activation triggered by protracted neuroinflammation. Information so

far acquired indicates that adenosine A Rs located on any cell type of the brain and on vascular and blood cells partake

in either salvage or demise of the tissue after a stroke, including protracted demyelination.

Thus, they all represent important targets for drugs having different therapeutic time-windows after stroke. The final

protective outcome for an agonist versus antagonist compound depends on time of administration and district of activation

of the receptor targeted by the drug.
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