

Cooling Techniques in Solar Cells

Subjects: [Energy & Fuels](#)

Contributor: Khalifa Aliyu Ibrahim , Patrick Luk , Zhenhua Luo

Non-concentrated photovoltaics (PV) have modest efficiency of up to around 20% because they utilise only a narrow spectrum of solar irradiation for electricity conversion. Therefore, recent advances employed multi-junction PV or concentrated photovoltaic (CPV) to widen the irradiation spectrum for conversion. CPV systems concentrate solar irradiation on the cell's surface, producing high solar flux and temperature. The efficient cooling of CPV cells is critical to avoid thermal degradation and ensure optimal performance.

concentrated solar cell

solar energy

electrical and thermal efficiency

CPV cooling mechanism

heat transfer enhancement

1. Introduction

Solar energy in the world's total energy mix has become much more significant over the past two decades [\[1\]\[2\]\[3\]](#). Photovoltaic (PV) cells produce electricity directly from the sun's irradiation. They are an excellent alternative to decreasing the use of fossil fuels, which contributes to global warming [\[4\]\[5\]\[6\]](#). On our planet, solar energy from direct sunlight is both the most widespread and the most easily accessible source of energy [\[7\]\[8\]](#). Sand, widely accessible globally, is the primary silicon source for PV cells [\[9\]](#). Most PV systems consist of single-junction PV cells, which have become more cost-effective in recent decades. However, their efficiency is relatively low, around 20%, because they can only convert a narrow range of electromagnetic waves into electricity. Multi-junction PV cells, also known as concentrated photovoltaic (CPV) cells, have recently emerged as an alternative. The structure of multijunction CPV cells broadens the spectrum of electromagnetic waves that can be converted into energy, making them a more attractive option for the renewable energy community. CPV systems utilise equipment such as parabolic mirrors to concentrate and increase solar irradiation density up to 1000 times (1000 suns) at the CPV cell's surface.

2. Types and Classification of Cooling Techniques in Solar Cells

Research by [\[10\]](#) examines the cooling system using an active cooling system pump. It collects the heat from the PV and dissipates it utilising a convector or heat sink. Several researchers have highlighted that active cooling is more efficient and suitable for high concentrations. The authors of [\[10\]](#) experimented and reported that the output of a concentration solar panel is between 4.7 and 5.2 times that of the nonconcentrated cell. The results demonstrate that the solar cell temperature was reduced to below 60 °C, generating more electrical output. Research using

parabolic concentrators to analyse heat transfer in photovoltaics has been conducted by [11]. Researchers found that the temperature of the concentrator aperture and the PV cell increased with the intensity of incident solar energy. A comparative analysis is presented in **Table 1** between the most commercially available photovoltaic and a concentrated multijunction solar cell based on the following references [12][13][14][15][16][17].

Table 1. Comparison between primarily used solar cells with concentrated multijunction solar cells.

Type of Solar Cell	Monocrystalline	Polycrystalline	Thin Film	Multi-Junction
Type of Material	Fragments from single wafer crystal	Fragments from different silicon crystals	Fragments from single wafer crystal	Combination of different semiconductors
Life Span	25 to 30 years	20 to 25 years	10 to 20 years	30 or more years
Efficiency	14 to 26%	12 to 21%	Very low	33.8 to 69.1
Appearance	Aesthetic	Non-aesthetic	Aesthetic	Aesthetic
Portability	Big, comes in different size	Big, comes in different size	Flexible lightweight	Lightweight, smaller size
Number of Junctions	1	1	1	It can have 2–7
Cost	High	High	Low	Higher

Research and development in CPV have highlighted the importance of effective cooling. The cooling system ensures that the cell operates within its optimal temperature. CPV cooling design typically has thermal resistance coefficients with good cell temperature uniformity for maximum efficiency [18]. Additionally, it is vital to consider the cooling system's power consumption, ease of installation, and high level of dependability. The selection of a cooling technique depends on the objective and operational environment [18]. However, the suitability of a cooling method is contingent on the solar concentration, location, installation, and system output requirements [19]. Researchers classify CPV cooling as either passive or active, depending on the geometry, coolant, and level of solar concentration [19]. Furthermore, CPV cooling can be categorised based on the nature of heat transfer, natural circulation and forced circulation, or the type of coolant as passive cooling and active cooling [7][20][21]. Researchers report that passive cooling is suitable for concentrations of less than 20 suns; in high concentrations, active cooling is necessary [22].

Natural circulation and forced circulation can be air-based cooling or water-based cooling. Air-based cooling is simple and cheaper [21]. However, it has a lower heat transfer coefficient which varies from 1–10 W/m².KW/m².K for natural circulation to 20–100 W/m².K W/m².K for forced circulation [18]. Water-based cooling has a better heat transfer coefficient of 200–1000 W/m².K W/m².K for natural circulation and 1000–1500 W/m².KW/m².K for forced circulation [11][23][24]. Ref. [25] stated heat pipe heat sink dissipates flux in CPV. Researchers reported that under 25

suns, the heat pipe and heat sink could cool CPV to 37.8 °C and 54.16 °C, respectively. They have highlighted that this cooling method is cost-effective due to its low energy consumption. The disadvantage of passive cooling is the size in terms of the heatsink area. Economically, the passive system is not viable because it requires a large amount of material, consisting of larger fins and plate areas depending on the concentration ratio [1][2][3][19][26][27]. Photovoltaic (PV) cells produce electricity directly from the sun's irradiation. They are an excellent alternative to decreasing the use of fossil fuels, which contributes to global warming [4][5][6]. On our planet, solar energy from direct sunlight is both the most widespread and the most easily accessible source of energy [7][19][26][27][28]. In other words, the greater the concentration ratio of the CPV, the larger the required heatsink. This has reduced the feasibility and attractiveness of using a PC system to cool a CPV. The use of active cooling (AC) to achieve temperature uniformity has been studied. With this method, the coolant circulates through the cooling system using an active cooling system pump. It collects the heat from the PV and dissipates it utilising a convector or heat sink. Several researchers have highlighted that active cooling is more efficient and suitable for high concentrations [25][29][30][31]. However, one of the limitations posed by AC includes temperature non-uniformity. **Table 2** summarises research availability and current challenges of CPV cooling.

Table 2. Limitations and challenges in existing methods of CPV cooling.

Cooling Technique	Method of Study	Concentration	Main Challenges	Reference
Heat Pipe and Fins	Experiment			
	Theoretical			
	Numerically			
PCM	Experiment			
	Theoretical			
	Numerically			
Jet Impingement	Experiment			
	Theoretical			
	Numerically			
Simulation	Experiment			
	Theoretical			
	Numerically			

Cooling Technique	Method of Study	Concentration	Main Challenges	Reference
Immersion Liquid	Experiment Theoretical Numerically Simulation 	Lower Medium High	Salt deposition issue, cell performance depression, pressure drop, type of liquid, increased weight, design architecture	[30][47][48][49] [50][51][52]
Microchannel	Experiment Theoretical Numerically Simulation 	Lower Medium High	Pressure drops, corrosion, temperature non-uniformity, higher manufacturing costs, more power requirements, more studies are needed to commercialise	[53][54][55][56] [57][58]

cooling, and heat pipes, can potentially enhance electrical and thermal performance. Researchers can utilise the organic Rankine cycle (ORC) to create a mutually beneficial scenario to achieve cell temperature reduction while enhancing system output by incorporating a heat recovery system into a CPV thermal system. However, various restrictions and challenges exist associated with implementing concentrated photovoltaic/thermal (CPV/T) hybrid system configuration. systems, such as complexities related to design, initial costs, component compatibility, and a lack of available platforms integrated model packages for research purposes. Electroosmotic flow (EOF) is another method of improving heat transfer by inducing fluid motion through an electric field, enhancing convective heat transfer [59][60][61]. This approach can be beneficial in microfluidic channels and other critical applications. Researchers use magnetohydrodynamics (MHD) flow to enhance heat transfer. Applying an external magnetic field induces fluid motion and enhances convective heat transfer. MHD flow has been used in various heat transfer applications, such as nuclear reactors, liquid metal batteries, and plasma devices [58][59][60]. The limitations and research gaps of the current approach to heat transfer enhancement are summarised in **Table 3**.

Table 3. Heat transfer enhancement approach in thermal energy management (MHTE).

MHTE Approach	Area of Approach	Current State of Art	Research Gap and Limitations
Use of Nanofluid	Type coolant		Corrosion problems, stability issues, sedimentation issues, agglomeration issues, pressure drop, high cost
Hybrid Cooling	Overall system		Compatibility issues, cost economic viability, integrating components within a single system
Boiling Heat Pipes (PHP)	Phase change liquids		Limited modelling tools, no flow pattern control, little experimental work, and availability of components to measure flow.

MHTE Approach	Area of Approach	Current State of Art	Research Gap and Limitations
Magneto Hydrodynamics (MHD)	Type coolant and overall system		Limited experimental work, more numerical models and simulations research are required, and additional cost
Electro Osmotic Flow (EOF)	Porous material under the influence of an electric field		Limited modelling tools, effects of channel geometries on the EOF, design optimisation
Pulsating Flow	Flow and overall system		Limited theoretical study, more research is needed combined with porous media, contradicting results, additional cost due to using of solenoid valves, other means to provide pulsation can be explored, may lead to system complexity

References

Level of Research Reported = Review on Recent Trends of Solar Photo voltaic Technology * = *Explor. Exploit.* 2016, 34, 486–526. limited research in a ground couple/ ORC systems; = Limited number of studies available and have been in the field of electronics; = Studies available mainly in the field 2. Ankit; Sahoo, S.K.; Sukchai, S.; Yanine, F.F. *Review and Comparative Study of Single-Stage Inverters for a PV System*. *Renew. Sustain. Energy Rev.* 2018, 91, 962–986.

3. Zhang, J.; Xuan, Y. Performance Improvement of a Photovoltaic—Thermoelectric Hybrid System Subjecting to Fluctuant Solar Radiation. *Renew. Energy* 2017, 113, 1551–1558.
4. Al-Nimr, M.A.; Bukhari, M.; Mansour, M. A Combined CPV/T and ORC Solar Power Generation System Integrated with Geothermal Cooling and Electrolyser/Fuel Cell Storage Unit. *Energy* 2017, 133, 513–524.
5. Abdulmunem, A.R.; Samin, P.M.; Rahman, H.A.; Hussien, H.A.; Mazali, I.I. Enhancing PV Cell's Electrical Efficiency Using Phase Change Material with Copper Foam Matrix and Multi-Walled Carbon Nanotubes as Passive Cooling Method. *Renew. Energy* 2020, 160, 663–675.
6. Nandurkar, Y.; Shrivastava, R.L.; Soni, V.K. Improvement in Energy Efficiency of CPV Module by Way of Various Active and Passive Cooling Techniques. *J. Inst. Eng. India Ser. C* 2022, 103, 259–265.
7. Sharaf, M.; Huzayyin, A.S.; Yousef, M.S. Performance Enhancement of Photovoltaic Cells Using Phase Change Material (PCM) in Winter. *Alex. Eng. J.* 2022, 61, 44.
8. Xu, H.; Wang, N.; Zhang, C.; Qu, Z.; Karimi, F. Energy Conversion Performance of a PV/T-PCM System under Different Thermal Regulation Strategies. *Energy Convers. Manag.* 2021, 229, 113660.
9. Ranabhat, K.; Patrikeev, L.; Revina, A.A.; Andrianov, K.; Lapshinsky, V.; Sofronova, E. An Introduction to Solar Cell Technology. *J. Appl. Eng. Sci.* 2016, 14, 481–491.

10. Du, B.; Hu, E.; Kolhe, M. Performance Analysis of Water Cooled Concentrated Photovoltaic (CPV) System. *Renew. Sustain. Energy Rev.* 2012, 16, 6732–6736.
11. Mallick, T.K.; Eames, P.C.; Norton, B. Using Air Flow to Alleviate Temperature Elevation in Solar Cells within Asymmetric Compound Parabolic Concentrators. *Sol. Energy* 2007, 81, 3.
12. Hersch, P.; Zweibel, K.S. *Basic Photovoltaic Principles and Methods*; Energy Research Institute: Washington, DC, USA, 1982.
13. Nayan, M.F.; Ullah, S.M.S.; Saif, S.N. Comparative Analysis of PV Module Efficiency for Different Types of Silicon Materials Considering the Effects of Environmental Parameters. In Proceedings of the 3rd International Conference on Electrical Engineering and Information and Communication Technology, iCEEICT 2016, Dhaka, Bangladesh, 22–24 September 2016.
14. Wilson, G.M.; Al-Jassim, M.; Metzger, W.K.; Glunz, S.W.; Verlinden, P.; Xiong, G.; Mansfield, L.M.; Stanbery, B.J.; Zhu, K.; Yan, Y.; et al. The 2020 Photovoltaic Technologies Roadmap. *J. Phys. D Appl. Phys.* 2020, 53, 493001.
15. Itten, R.; Stucki, M. Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts. *Energy* 2017, 10, 841.
16. Philipps, S.P.; Bett, A.W. III-V Multi-Junction Solar Cells and Concentrating Photovoltaic (CPV) Systems. *Adv. Opt. Technol.* 2014, 3, 469–478.
17. Ibrahim, K.A.; Kim, M.; Kinuthia, D.; Hussaini, Z.A.; Crawley, F.; Luo, Z. High Performance Green Hydrogen Generation System. In Proceedings of the IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, PowerMEMS 2021, Virtual, 6–8 December 2021.
18. Xiao, M.; Tang, L.; Zhang, X.; Lun, I.; Yuan, Y. A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems. *Energy* 2018, 11, 3416.
19. Bahaidarah, H.M.S.; Baloch, A.A.B.; Gandhidasan, P. Uniform Cooling of Photovoltaic Panels: A Review. *Renew. Sustain. Energy Rev.* 2016, 57, 1520–1544.
20. Sharaf, M.; Yousef, M.S.; Huzayyin, A.S. Review of Cooling Techniques Used to Enhance the Efficiency of Photovoltaic Power Systems. *Environ. Sci. Pollut. Res.* 2022, 29, 26131–26159.
21. Wang, S.; Shi, J.; Chen, H.H.; Schafer, S.R.; Munir, M.; Stecker, G.; Pan, W.; Lee, J.J.; Chen, C.L. Cooling Design and Evaluation for Photovoltaic Cells within Constrained Space in a CPV/CSP Hybrid Solar System. *Appl. Eng.* 2017, 110, 196.
22. Royne, A.; Dey, C.J.; Mills, D.R. Cooling of Photovoltaic Cells under Concentrated Illumination: A Critical Review. *Sol. Energy Mater. Sol. Cells* 2005, 86, 451–483.

23. Tonui, J.K.; Tripanagnostopoulos, Y. Air-Cooled PV/T Solar Collectors with Low Cost Performance Improvements. *Sol. Energy* 2007, 81, 2.

24. Radziemska, E. Performance Analysis of a Photovoltaic-Thermal Integrated System. *Int. J. Photoenergy* 2009, 2009, 732093.

25. Anand, S.; Senthil Kumar, M.; Balasubramanian, K.R.; Ajith Krishnan, R.; Maheswari, L. An Experimental Study on Thermal Management of Concentrated Photovoltaic Cell Using Loop Heat Pipe and Heat Sink. *Heat Transf. Asian Res.* 2019, 48, 21504.

26. Theristis, M.; Sarmah, N.; Mallick, T.K.; O'Donovan, T.S. Design and Numerical Analysis of Enhanced Cooling Techniques for a High Concentration Photovoltaic (HCPV) System. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012.

27. Cui, M.; Chen, N.; Yang, X.; Wang, Y.; Bai, Y.; Zhang, X. Thermal Analysis and Test for Single Concentrator Solar Cells. *J. Semicond.* 2009, 30, 044011.

28. Xu, J.; Luo, E.; Hochgreb, S. A Thermoacoustic Combined Cooling, Heating, and Power (CCHP) System for Waste Heat and LNG Cold Energy Recovery. *Energy* 2021, 227, 20341.

29. Abo-Zahhad, E.M.; Ookawara, S.; Radwan, A.; El-Shazly, A.H.; ElKady, M.F. Thermal and Structure Analyses of High Concentrator Solar Cell under Confined Jet Impingement Cooling. *Energy Convers. Manag.* 2018, 176, 39–54.

30. Al-Amri, F.; Maatallah, T.S.; Al-Amri, O.F.; Ali, S.; Ali, S.; Ateeq, I.S.; Zachariah, R.; Kayed, T.S. Innovative Technique for Achieving Uniform Temperatures across Solar Panels Using Heat Pipes and Liquid Immersion Cooling in the Harsh Climate in the Kingdom of Saudi Arabia. *Alex. Eng. J.* 2022, 61, 1413–1424.

31. Anderson, W.G.; Dussinger, P.M.; Sarraf, D.B.; Tamanna, S. Heat Pipe Cooling of Concentrating Photovoltaic Cells. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008.

32. Gilmore, N.; Timchenko, V.; Menictas, C. Microchannel Cooling of Concentrator Photovoltaics: A Review. *Renew. Sustain. Energy Rev.* 2018, 90, 1041–1059.

33. Shittu, S.; Li, G.; Zhao, X.; Akhlaghi, Y.G.; Ma, X.; Yu, M. Comparative Study of a Concentrated Photovoltaic-Thermoelectric System with and without Flat Plate Heat Pipe. *Energy Convers. Manag.* 2019, 193, 55.

34. Shittu, S.; Li, G.; Zhao, X.; Zhou, J.; Ma, X.; Akhlaghi, Y.G. Experimental Study and Exergy Analysis of Photovoltaic-Thermoelectric with Flat Plate Micro-Channel Heat Pipe. *Energy Convers. Manag.* 2020, 207, 112515.

35. Badr, F.; Radwan, A.; Ahmed, M.; Hamed, A.M. An Experimental Study of the Concentrator Photovoltaic/Thermoelectric Generator Performance Using Different Passive Cooling Methods. *Renew. Energy* 2022, 185, 80.

36. Han, X.; Lv, Y. Design and Dynamic Performance of a Concentrated Photovoltaic System with Vapor Chambers Cooling. *Appl. Eng.* 2022, 201, 117824.

37. Han, X.; Zhao, X.; Chen, X. Design and Analysis of a Concentrating PV/T System with Nanofluid Based Spectral Beam Splitter and Heat Pipe Cooling. *Renew. Energy* 2020, 162, 131.

38. Senthilkumar, M.; Balasubramanian, K.R.; Kottala, R.K.; Sivapirakasam, S.P.; Maheswari, L. Characterization of Form-Stable Phase-Change Material for Solar Photovoltaic Cooling. *J. Anal. Calorim.* 2020, 141, 2487–2496.

39. Nasef, H.A.; Nada, S.A.; Hassan, H. Integrative Passive and Active Cooling System Using PCM and Nanofluid for Thermal Regulation of Concentrated Photovoltaic Solar Cells. *Energy Convers. Manag.* 2019, 199, 12065.

40. Duan, J. A Novel Heat Sink for Cooling Concentrator Photovoltaic System Using PCM-Porous System. *Appl. Eng.* 2021, 186, 116522.

41. Rahmanian, S.; Rahamanian-Koushkaki, H.; Omidvar, P.; Shahsavar, A. Nanofluid-PCM Heat Sink for Building Integrated Concentrated Photovoltaic with Thermal Energy Storage and Recovery Capability. *Sustain. Energy Technol. Assess.* 2021, 46, 101223.

42. Aslfattahi, N.; Saidur, R.; Arifutzzaman, A.; Abdelrazik, A.S.; Samylingam, L.; Sabri, M.F.M.; Sidik, N.A.C. Improved Thermo-Physical Properties and Energy Efficiency of Hybrid PCM/Graphene-Silver Nanocomposite in a Hybrid CPV/Thermal Solar System. *J. Anal. Calorim.* 2022, 147, 125–1142.

43. Barrau, J.; Omri, M.; Chemisana, D.; Rosell, J.; Ibañez, M.; Tadrist, L. Numerical Study of a Hybrid Jet Impingement/Micro-Channel Cooling Scheme. *Appl. Eng.* 2012, 33–34, 1.

44. Barrau, J.; Perona, A.; Dollet, A.; Rosell, J. Outdoor Test of a Hybrid Jet Impingement/Micro-Channel Cooling Device for Densely Packed Concentrated Photovoltaic Cells. *Sol. Energy* 2014, 107, 113–121.

45. Awad, M.; Radwan, A.; Abdelrehim, O.; Emam, M.; Shmrourkh, A.N.; Ahmed, M. Performance Evaluation of Concentrator Photovoltaic Systems Integrated with a New Jet Impingement-Microchannel Heat Sink and Heat Spreader. *Sol. Energy* 2020, 199, 78.

46. Barrau, J.; Rosell, J.; Chemisana, D.; Tadrist, L.; Ibañez, M. Effect of a Hybrid Jet Impingement/Micro-Channel Cooling Device on the Performance of Densely Packed PV Cells under High Concentration. *Sol. Energy* 2011, 85, 4.

47. Han, X.; Wang, Y.; Zhu, L. Electrical and Thermal Performance of Silicon Concentrator Solar Cells Immersed in Dielectric Liquids. *Appl. Energy* 2011, 88, 37.

48. Mehrotra, S.; Rawat, P.; Debbarma, M.; Sudhakar, K. Performance of a Solar Panel with Water Immersion Cooling Technique. *Int. J. Sci. Environ. Technol.* 2014, 3, 1161–1172.

49. Rawat, P.; Sudhakar, K. Performance Analysis of Partially Covered Photovoltaic Thermal Water Collector. *Int. J. Res. Eng. Technol.* 2016, 5.

50. Sun, Y.; Wang, Y.; Zhu, L.; Yin, B.; Xiang, H.; Huang, Q. Direct Liquid-Immersion Cooling of Concentrator Silicon Solar Cells in a Linear Concentrating Photovoltaic Receiver. *Energy* 2014, 65, 264–271.

51. Kang, X.; Wang, Y.; Huang, Q.; Cui, Y.; Shi, X.; Sun, Y. Study on Direct-Contact Phase-Change Liquid Immersion Cooling Dense-Array Solar Cells under High Concentration Ratios. *Energy Convers. Manag.* 2016, 128, 73.

52. Xin, G.; Wang, Y.; Sun, Y.; Huang, Q.; Zhu, L. Experimental Study of Liquid-Immersion III-V Multi-Junction Solar Cells with Dimethyl Silicon Oil under High Concentrations. *Energy Convers. Manag.* 2015, 94, 63.

53. Farahani, S.D.; Alibeigi, M.; Zakinia, A.; Goodarzi, M. The Effect of Microchannel-Porous Media and Nanofluid on Temperature and Performance of CPV System. *J. Anal. Calorim.* 2021, 147, 7945–7962.

54. Radwan, A.; Ookawara, S.; Ahmed, M. Analysis and Simulation of Concentrating Photovoltaic Systems with a Microchannel Heat Sink. *Sol. Energy* 2016, 136, 70.

55. Soliman, A.M.A.; Hassan, H. Effect of Heat Spreader Size, Microchannel Configuration and Nanoparticles on the Performance of PV-Heat Spreader-Microchannels System. *Sol. Energy* 2019, 182, 59.

56. Yang, K.; Zuo, C. A Novel Multi-Layer Manifold Microchannel Cooling System for Concentrating Photovoltaic Cells. *Energy Convers. Manag.* 2015, 89, 46.

57. Sohel Murshed, S.M.; Nieto de Castro, C.A. A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling. *Renew. Sustain. Energy Rev.* 2017, 78, 821–833.

58. Ghani, I.A.; Sidik, N.A.C.; Kamaruzaman, N. Hydrothermal Performance of Microchannel Heat Sink: The Effect of Channel Design. *Int. J. Heat Mass Transf.* 2017, 107, 21–44.

59. Bhandari, P.; Singh, J.; Kumar, K.; Ranakoti, L. A review on active techniques in microchannel heat sink for miniaturisation problem in electronic industry. *Acta Innov.* 2022, 2022, 45–54.

60. Ganguly, S.; Sarkar, S.; Kumar Hota, T.; Mishra, M. Thermally Developing Combined Electroosmotic and Pressure-Driven Flow of Nanofluids in a Microchannel under the Effect of Magnetic Field. *Chem. Eng. Sci.* 2015, 126, 60.

61. Shit, G.C.; Mondal, A.; Sinha, A.; Kundu, P.K. Electro-Osmotically Driven MHD Flow and Heat Transfer in Micro-Channel. *Phys. A Stat. Mech. Appl.* 2016, 449, 8.

Retrieved from <https://encyclopedia.pub/entry/history/show/96018>