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One of the important ways to reduce pollution resulting from the increasing consumption of fossil energy is to enhance the

sources of solar energy, of which photovoltaic cells (PV) are one of its most important tools. Therefore, it was necessary to

pay attention to improving its efficiency for it to become a promising source of clean energy. PVs turn solar energy into

electricity; however, the amount of electricity generated decreases as the temperature of the cells rises in response to the

sun’s heat. Cooling of the optical surfaces is one of the most important elements to consider while running solar PV

systems to obtain maximum efficiency. 
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1. Introduction

Fossil fuels produce more than 80% of the world’s energy. Combustion residues of these fuels negatively affect the

environment by producing acid rain and causing global warming, which increases rapidly with development and increases

in the world population because of the increasing demand for energy , so it was necessary to search for renewable

energy sources . Solar energy is one of the most significant renewable energy sources since it can readily be turned into

thermal and electrical energy, in addition to being sustainable, available and clean energy .

2. Improving the Generation of Clean Energy by Cooling Techniques to
Reduce Environmental Effects

PV panels convert solar energy into electricity. However, if the temperature of the cells rises owing to the sun’s

temperature, the output of electricity falls. Therefore, different cooling techniques were used for solar cells to control their

temperature, as shown in Table 1.

Table 1. Photovoltaic cooling techniques.

Techniques Advantages Limitations

Air cooling
Photovoltaic/Thermal

Easy-to-use technology.

Air is always accessible.

Improves the overall efficiency.

It is economically feasible.

Heated air is employed in HVAC systems.

Reduces corrosive danger.

Has limited thermal capacities and

requires a lot of energy to circulate air

blowers (in active cooling).

Has low mass-flow rates, so little effect

on PV temperatures.
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Techniques Advantages Limitations

Water cooling
Photovoltaic/Thermal

Overall efficiency has improved.

Increased electric energy conversion

efficiency.

Hot water is utilized for residential

purposes.

Space requirements are less than for

individual systems.

High start-up costs.

System life is reduced.

In chilly weather, it is possible that you

will freeze.

Pumping power consumes a lot of

electricity.

Possible corrosion, fouling and leaking.

PV/water spraying

Increased conversion of solar energy.

Higher thermal conductivity and heat

capacity (low thermal resistance).

The PV panel’s surface area is partly

cooled.

A higher price (maintenance, pumping

power)

Heat is a waste of resources.

PV/water immersion
cooling

Extremely effective.

Friendly to the environment

Both the front and rear surfaces transmit

heat.

The depth of submersion has an impact

on efficiency.

Higher price.

Because the item is insulated inside the

water, the system is complicated to

build.

PV/Phase-Change
Materials cooling

At modest temperature changes, huge

amounts of heat may be stored.

Phase-change happens at a steady

temperature; therefore, the system can

work even when the sun is not shining.

The heat that is absorbed can be utilized

to heat structures.

PCM has a low heat conductivity in its

solid form.

Some PCMs are poisonous and provide

a fire hazard.

After the conclusion of the life cycle,

there is a difficulty with disposal.

The quantity of active volume available

for thermal storage is limited by

segregation.

Cooling of PV/Heat Pipes

Heat fluxes that are extremely high.

Heat exchange that is passive.

Transfer of heat across large distances.

It is simple to combine.

Longer life span.

High price.

Difficult to produce.

Non-condensable gas production.

Working agent leakage.
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Techniques Advantages Limitations

PV/Microchannel heat
sink cooling

Removes a lot of heat from a tiny space.

Low inventory of fluids is necessary.

Low electricity consumption; thermal

resistance is low.

Limitations on pressure decrease.

Corrosion is an issue.

Manufacturing at a high cost.

PV/Nano-fluids cooling

There are nanofluids on the market.

Thermal efficiency that is higher.

Technology in its infancy.

Influences are unknown (interaction with

base fluids and characteristics).

Nanoparticles are expensive.

PV/Spectrum filter

The operating temperature has been

reduced.

Hybridization with concentrating or other

systems is possible.

Technology that is not completely

developed.

High-priced (glass filters)

Because of the increasing demand for energy and the excessive use of traditional energy sources, this has led to an

increase in environmental pollution due to emissions from burning fuels. Cooling solar cells increases their potential to

create clean energy and use it as an alternative to traditional polluting energy sources.

Researchers provided an in-depth analysis of the design components of a concentrated photovoltaic thermal, heat

transfer medium and new application sectors. The findings show that CPVT systems are a promising system for producing

high amounts of clean electrical and thermal energy that are in line with the seven sustainable development goals by

using this energy in a variety of thermal applications such as space heating and cooling, desalination, electrical energy

generation, greenhouses and so on . Other researchers compared the performance of a water-based

photovoltaic system (thermal), a PV/T system with PCM, an air-based PV/T system and a conventional PV panel in

different studies.

In comparison to alternative kinds of cooling, it was found that the efficiency of the systems in producing energy depends

on the type of material used, and all the arrangements proved to be more important solutions for delivering superior

thermal and electrical efficiency systems (compared with the conventional system), thus serving as a promising source as

an alternative to fossil energy that gives rise to air pollution and an increased earth temperature . Some

researchers focused on the increasing consumption of fossil energy and the accompanying emissions and pollution as a

result of urban transformation and expansion of the construction and service sectors in developing countries in particular.

Accordingly, the researchers’ efforts focused on improving the performance of photovoltaic cells, whose efficiency is

affected by atmospheric conditions, to make them a suitable substitute for the production of clean energy .

Researchers  looked at the energy-increasing and environmental impacts of using nanofluids (NFs) in PVTS by

measuring their physical and thermal properties. The researchers discovered that dispersion of nanoparticles in the base

fluid increases the PVTS’ thermal and electrical performance, which improves the systems’ environmental characteristics.

In fact, a nano-fluid-based solar system may avoid the release of greenhouse gases emissions, particularly carbon

dioxide (CO ), into the environment more effectively than pure heat pumps by producing more energy. The performance

of the integration of the Kalina cycle with CPVT for a multi-generation and hydrogen production system was investigated

utilizing air and water as a cooling medium and three distinct mass flow rates. According to the findings of these studies,

electricity, hydrogen and hot air production were increased. These kinds of systems would be used to minimize pollution in

the environment because the emissions will decrease significantly .

The steady increase in population numbers and the need to address the problem of food insecurity in some countries

made some researchers search for quick, effective and environmentally friendly ways to dry food, as the drying process

consumes energy intensively, and the use of fossil energy in the drying process increases pollution. In these cases, the

focus was on improving the performance of solar energy systems to provide the appropriate energy . On the

other hand, water is also a paramount necessity for human life, and the need to provide for drinking water in water-poor
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countries requires desalination since desalination consumes a large amount of energy. Some researchers have

developed ways to use solar energy when desalinating water as well as storing energy for use when needed. This

reduces the consumption of fossil energy and the emission of gases .
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