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Parkinsonian tremors are sometimes confused with essential tremors or other conditions. Researchers conducted

several studies on tremor evaluation using wearable sensors and devices, which may support an accurate

diagnosis. Mechanical devices are also commonly used to treat tremors and have been actively researched and

developed. Mechanical devices for tremor suppression include deep brain stimulation (DBS), electrical muscle

stimulation, and orthosis. Adaptive DBS and optimization of stimulation parameters have been studied to improve

treatment efficacy further. Due to developments using state-of-the-art techniques, effectiveness in diagnosing,

evaluating, and suppressing tremors using these devices is satisfactorily high in many studies.

Parkinson’s disease  essential tremor  diagnosis

1. Introduction

Parkinson’s disease (PD) is a progressive degenerative disorder primarily characterized by the degeneration of

dopamine neurons in the substantia nigra . Its main symptoms include tremor, rigidity, bradykinesia, akinesia,

and postural instability . Tremors are one of the most common motor symptoms of PD. PD can be classified into

different subtypes as follows: patients with predominant akinesia/rigidity, which is an akinetic-rigid type (ART), and

those with a tremor-dominant type (TDT) . PD-ART displays greater cognitive impairment and faster progression

than TDT-PD . This warrants understanding the status of tremors, considering their role in diagnosing the disease

and its symptoms. Non-pathological, slight physiological tremors can be found in normal individuals. Pathological

tremor affects more than 0.4% of the population , and its incidence and prevalence increase substantially with

age .

Tremor is caused by a variety of conditions , and its exact underlying mechanism is not understood . Among

several causes of tremor, the most common and incidental types of tremor are seen in patients with PD and

essential tremor (ET) . ET is a major differential diagnosis. According to the 2018 Movement Disorders

Consensus Criteria, ET is characterized by isolated bilateral upper limb movement tremor with a duration of at least

3 years without other neurologic signs . Tremor in patients with ET and PD is sometimes confusing. PD is a

complex neurodegenerative disorder, usually characterized by asymmetrical onset bradykinesia, muscular rigidity,

postural instability, and tremor. Patients with PD present with resting tremor, as well as other symptoms, except

during the early stages. Resting tremors are often enhanced by walking and performing tasks, such as calculation.

In contrast, tremor severity tends to increase during kinetic tasks in patients with ET. Despite the lack of a test to
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confirm diagnosis, medical interviews, physical examinations, and blood tests should exclude other common

causes of action tremors, such as the side effects of certain medications or hyperthyroidism.

Tremor assessment is based on physical examination by a neurologist. Current diagnostic methods and

quantification are based on the phenomenological demonstration of tremor, principally with the help of movement

disorder scales, such as the essential tremor rating assessment scale , Fahn–Tolosa–Marin scale , and

Unified Parkinson’s Disease Rating Scale (UPDRS) . The correct diagnosis of the different tremor types is

essential for treatment, which may depend on the specific etiology of each type. However, tremor misdiagnosis

owing to confusion between PD and ET can occur in 20% to 30% of cases . Thus, technological solutions

may improve the quality of diagnosis and quantify the disease stage.

2. Tremor Diagnosis Using Devices

2.1. Distinguishing between Patients with PD and Healthy Individuals, Using
Devices

With regard to tremor diagnosis, distinguishing between ET and PD is sometimes challenging. Therefore,

researchers are actively identifying ways to support differential diagnosis by device-based objective evaluation.

The first step in diagnosis is to distinguish a patient from a healthy individual. Giulia et al., used a wearable inertial

sensor to discriminate between patients with PD and healthy participants . Thirty-six patients with PD and 29

healthy controls performed the following seven motor tasks from the Movement Disorder Society-Sponsored

Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) III wearing inertial sensors: resting

tremor, postural tremor, rapid alternating hand movement, foot tapping, heel-to-toe tapping, timed up and go test

(TUG), and a pull test. Of these endpoints, SVM was performed using highly relevant items, namely, tremor,

bradycardia, pull test, and TUG, and was able to distinguish between patients with PD and healthy controls with a

high accuracy of 97%. Channa et al., also developed the A-WEAR bracelet for diagnosis using 3D acceleration and

gyroscopes, which accurately identified PD with a 91.7% probability by K-nearest neighbors . Such research has

been applied to smartphones and smartwatches. Kostikis et al., developed a smartphone-based tool to assess

upper limb tremor in patients . Using machine learning, the system correctly classified 82% and 90% of the

patients and healthy participants, respectively, based on data from a smartphone’s accelerometer and gyroscope.

Prototypes have also been developed using smartwatches . This system was tested with artificial neural

networks, random forests, and SVM, and trained on a sample comprising 192, 75, and 51 patients with PD, other

movement disorders, and healthy participants, respectively. Artificial neural networks displayed the best results in

distinguishing healthy participants from others, including those with PD and other movement disorders, with

precision and recall of 0.94 (SD 0.03) and 0.92 (SD 0.04), respectively. Moreover, SVM demonstrated the best

performance in distinguishing patients with PD from those with other motor disabilities, and healthy participants,

with precision and recall of 0.81 (SD 0.01) and 0.89 (SD 0.04), respectively. Moreover, there are other validations

of diagnostics using commercially available smartwatches . A study which used the Apple Watch series 3 and 4,

which are commonly distributed smartwatches, first evaluated their accuracy by comparing it with the Nanometrics

seismometer. Both series 3 and 4 were confirmed to be accurate, with a maximum error of <0.01 Hz from the
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seismograph. The patient performed a test designed by a disability specialist to obtain acceleration data while

wearing the smartwatch. Machine learning was used to discriminate between patients with PD, healthy

participants, and those with motor impairments other than PD (ET, Parkinsonism, etc.). The machine learning

classifiers used were as follows: SVM, CatBoost, multilayer perceptron, and simple deep learning architecture.

SVM, CatBoost, and multilayer perceptron displayed a balanced accuracy of >80% and precision and recall rates

of >90% for patients with PD and healthy participants. In an advanced task that distinguishes PD and non-PD

motor impairment, the multilayer perceptron demonstrated a balanced accuracy, precision, and recall of 74.1%,

86.5%, and 90.5%, respectively. Thus, considerable identification accuracy can be achieved, even with consumer

products. Another study used inertial data from a commercially available smartwatch to investigate eating behavior

and evaluate the reduction in motor symptoms in PD . They evaluated plate-to-mouth (PtM) in seven healthy

participants and 21 patients with PD. PtM is a measure related to the average time for the hands to transfer food

from the plate to the mouth when eating. Those with PD had higher PtM values than healthy participants.

Furthermore, a model using PtM was used to classify patients and revealed precision, recall, and F1 (harmonic

mean of fit and recall) of 0.882, 0.714, and 0.789, respectively. However, some of the aforementioned methods are

difficult to use because they require expertise in system operation and maintenance. Junior et al., developed a

device that can be combined with a regular pen as an approach for easier and simpler diagnosis . It can

distinguish patients with PD from healthy individuals through a simple diadochokinetic paper test, which assists in

diagnosing the early stages of PD. The device was equipped with an accelerometer and gyroscope, and the

acquired data were classified using linear discriminant analysis, logistic regression, classification and regression

trees, K-nearest neighbors, SVM, and naive Bayes. The results confirmed that the overall accuracy was

approximately 100% for multiple classifiers.

2.2. Distinguishing between PD and ET Using Devices

The classic method of differentiating PD tremor from ET involves iodine-123-labelled N-omega-(flu-

oropropyl)-2beta-carbomethoxy-3beta-(4-iodophenyl) tropane and iodine-123-labelled 2β-carbomethoxy-3β-(4-

iodophenyl) tropane dopamine transporter imaging with single-photon emission computed tomography using

nuclear imaging techniques . However, its accuracy may be less than that of clinical diagnosis by

movement disorder specialists . In addition, nuclear imaging techniques are widely unavailable because they

involve radiopharmaceuticals and are expensive and time-consuming. This warrants considering the mechanism of

relatively inexpensive and widely available wearable devices to identify PD and ET. Despite an overlap between

the frequency ranges exhibited by PD and ET tremors, the accelerometer power spectrum analysis signals can

effectively distinguish between PD and ET . Thanawattano et al., proposed a novel method for

extracting temporal features based on variations in the frequency of tremors with state . They attached six-axis

inertial sensors to the index fingers of the participants and requested them to perform three tasks as follows:

kinetic, postural, and resting. Each task took 10 s to complete. The elliptical regions of two-dimensional

representations of the resting task for those with PD and ET were significantly different (p < 0.05). Locatelli et al.,

developed a small, low-cost, wearable device with an inertial sensor . The device was worn on the wrist, and

four standardized tasks were performed to acquire data and build a classification model, which achieved an

average accuracy of >90%. Researchers have also used the acceleration from a smartwatch to identify PD and ET
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. The use of the mean harmonic peak power obtained from the accelerometer could facilitate calculation of the

optimal discrimination threshold by a receiver operating characteristic (ROC) analysis (sensitivity 90.9%, 95% CI

58.7–99.8%; specificity 100%, 95% CI 76.8–100%; and Cohen’s kappa = 0.91, SE = 0.08). In addition, the

accuracy of the smartwatch was evaluated using an analog accelerometer and provided consistent estimates of

the peak frequency and proportional harmonic power. Studies have also been conducted using smartphones:

Woods et al., performed a task while holding a smartphone in the hand to obtain acceleration information . This

application used discrete wavelet transforms and SVM to classify the data and found an accuracy rate of over 96%.

Barrantes et al., also used smartphones to identify PD and ET . Patients with an undecided diagnosis were

included in the evaluation and were re-evaluated after 1 year. For the experiment, smartphones were placed on the

dorsal side of the hand, and recordings were obtained for epochs of 30 s at rest and 30 s during arm stretching.

They calculated the ROC of the total spectral power to establish a threshold to separate participants with and

without tremors. The results demonstrated an accurate diagnosis of PD or ET in 27 of 32 patients (84.38%

discrimination accuracy). Of the patients with undecided diagnoses, all PD cases (two) and two of four ET cases

were correctly classified. Duque et al., also performed machine learning classification using the linear acceleration

of tremor recorded by the smartphone’s built-in accelerometer, and showed performances ranging from 90.0% to

100.0% sensitivity, and 80% to 100% specificity . Thus, the smartphone, a familiar device, is expected to be

utilized. Moon et al., evaluated the performance of several machine-learning methods, including neural networks,

SVM, K-nearest neighbor methods, decision trees, random forests, and gradient boosting . They used six inertial

sensors (on the wrist, back of the foot, sternum, and hip) to analyze balance and gait characteristics to distinguish

between PD and ET. The F1 score (harmonic mean of fit and recall), which is the most commonly used

performance metric in machine learning, was 0.61, 0.59, 0.56, 0.55, 0.53, and 0.49 for neural networks, gradient

boosting, random forest, SVM, decision tree, and K-nearest neighbors, respectively. It was superior to conventional

logistic regression, thus confirming the usefulness of machine learning for diagnosis. Most studies were diagnostic,

based on data obtained from inertial sensors, although some studies were conducted using EMG. A study

investigating the EEG characteristics of resting tremor in patients with ET and PD confirmed that the parameter

that best differentiated the two disorders was the pattern of muscle activation . Vescio et al., developed a μEMG

device worn on the wrist to record resting tremor . Comparison with common EMG recordings confirmed a good

correlation between tremor frequency (r = 0.93, p < 0.001) and phase difference (r = 0.92, p < 0.001). Thus,

wearable devices have been used to classify PD and ET with high accuracy. Further validation may provide more

efficient diagnostic and prognostic tools that can assist clinicians in decision-making processes.

3. Tremor Evaluation Using Devices

3.1. Tremor Evaluation Using Wearable Sensors

Raethjen et al., and Zhang et al., used EEG and EMG data to characterize tremors in patients with PD .

Currently, surface electromyography (sEMG) is the standard technique used for the characterization and

monitoring of tremors in patients with PD . Researchers have assessed the severity of tremors to determine the

diagnostic usefulness of sEMG. They compared 30 patients with PD with a healthy age-matched control group by
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attaching bipolar sEMG to the biceps brachii muscle and evaluated muscle activity. The recurrence and

determinism rates were significantly higher in the PD group than in the control group, and were correlated with the

UPDRS scores . Inertial sensors have been increasingly used in recent years . A study comparing

the accuracy of inertial sensors and EMG motion tracking showed that inertial sensors were more accurate .

Data-processing approaches vary across studies. Rigas et al., successfully estimated tremor severity based on

acceleration acquired using accelerometers attached to body segments and features extracted from a hidden

Markov model . Using a gradient descent algorithm, Cai et al., isolated the acceleration caused by pure

translational motion. A multiple regression model of UPDRS was created from the features extracted from these

accelerations and angular velocities . The performance of this model was r  = 0.95 for resting tremor and r  =

0.93 for postural tremor. Kim et al., developed SNUMAP, a wrist-mounted evaluation device with a three-axis

accelerometer and gyroscope . They trained recordings from 92 patients with PD using a convolutional neural

network (CNN) to create an estimated UPDRS model. The results displayed an average accuracy of 85%, with a

linearly weighted kappa of 0.85. CNNs could achieve higher accuracy than simple machine learning methods, such

as SVM or regression. Such machine learning-based methods have been a trend in recent years, and numerous

studies have been conducted. Wu et al., extracted characteristic values from acceleration signals in the time,

frequency, and spectral domains, and tested multiple machine learning methods. The results showed that the

neural network model was more accurate than the SVM, random forest, and multivariate linear regression models

. Another method using CNNs is to learn a convolved 2D image of the frequency response of the tremor signal

. The results showed an average accuracy of 91%, with a linearly weighted kappa of 0.91. Moreover,

researchers have proposed an approach to estimate UPDRS using fuzzy inference rather than machine learning

. The fuzzy theory postulates that the truth value is not binary, true, or false but rather deals with all intermediate

values. Moreover, it considers uncertainty. This method is scalable and easily tunable because it is modeled in a

manner similar to the human inference process. Garza-Rodríguez et al., also used fuzzy inference to evaluate

UPDRS from hand pronation/supination exercises, and found that in most cases the results were consistent with

expert evaluation . While wearable sensors have the advantage of monitoring patients in several situations,

devices that do not require attachment to the patient are also useful while measuring behavioral tremors under

specific conditions. This led to the development of Rehapiano, an ergonomically designed tremor evaluation device

with strain gauges placed on a two-handed handle . The performance evaluation also confirmed that the

sensitivity was sufficient to quantify the tremor. The other product is the TREMITAS-System, a pen-type device with

an accelerometer, 3D gyroscope, and 3D magnetometer . This device was able to quantify tremors and was

significantly correlated with UPDRS and the tremor research group essential tremor assessment scale subscores.

3.2. Tremor Evaluation Using Smartphones and Smartwatches

Smartphones have become the most popular devices in recent years, and studies have been conducted on the

evaluation of tremors using these devices. This is partly attributable to the rapid increase in their computing power.

Lemoyne et al., used a common smartphone to evaluate tremor frequency in patients with PD . Araujo et al.,

demonstrated good consistency between a clinically obtained EMG, and accelerometer data obtained using

smartphone applications (Pearson > 0.8, p < 0.001) . Bermeo et al., developed an Android application that could

assess the status of patients with PD based on three tests in the MDS-UPDRS . Kostikis et al., used a
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smartphone’s gyroscope and accelerometer to detect and quantify tremors. The smartphone detected data on

hand tremors, and the UPDRS hand tremor scores revealed a good correlation (r > 0.7 and p < 0.01) . These

studies have often been conducted in controlled environments, such as laboratories; however, some studies were

performed in free-living environments. Researchers have proposed an algorithm for tremor classification using a

multiple-instance learning method based on smartphone acceleration to cope with noisy data, which demonstrated

good classification performance . van Brummelen et al., compared laboratory-grade and consumer product

accelerometers and suggested that the amplitude at peak frequency varied among the sensors, indicating that

distal worn sensors tended to measure higher amplitudes relative to proximal ones. Thus, the placement of

sensors may be an important part of evaluating tremor amplitude . Thus, tremors can be detected and evaluated

with high precision without using dedicated sensors, besides having considerably lower hurdles for their use.

In addition to smartphones, several smartwatches have become popular in recent years, with the availability of

numerous models. Smartwatches may be suitable for tremor assessment because they are worn on the wrists.

Several studies evaluated tremors using sensors attached to the wrist. López-Blanco et al., quantified resting

tremors by obtaining the parameters of tremor intensity from the root mean square of angular velocity acquired

from a smartwatch . Furthermore, they simultaneously performed a statistical analysis of the quantified data with

the UPDRS-III score, which revealed a strong correlation with a Spearman’s correlation coefficient (ρ) of 0.81 (p <

0.001). In addition, satisfaction associated with the device was high. Tremors can also be classified using machine

learning based on triaxial acceleration data from commercially available smartwatches . Investigators have

achieved high tremor detection performance using a multitasking CNN that uses both raw signals and spectral data

representations as inputs. They are exploring data measurement characteristics necessary for the accurate

detection of PD symptoms . Following a comparative evaluation of commercially available smartwatches and

measurement sensors with multiple functions, accelerometer data from the smartwatch alone were sufficient to

detect tremors. A sampling rate ≥ 30 Hz was required to detect tremors using acceleration. In addition, they

investigated the impact of the features used in machine learning (time, frequency, entropy, correlation, and

derivative) on accuracy. Entropy was identified to be important for tremor detection. Entropy is computationally

expensive and affects real-time performance and battery consumption. Taken together, tremor detection using

smartwatches has reached a practical level and is expected to be utilized. The use of affordable wearable

technology is less burdensome and the most useful approach for routine care and assessment of patients with PD.

4. Tremor Monitoring

Despite the variety of novel devices being designed to assess tremors at specific times, several studies have

aimed at continuous monitoring. Assessments in clinics and other settings are time-limited and may not reflect

routine symptoms. This warrants an evaluation with prolonged monitoring to accurately assess disease status.

Such monitoring is also expected to be used as screening for the application of advanced treatments, such as DBS

. In the early studies, there was a type of study in which tests were taken several times a day ; however, in

recent years, a continuous monitoring system has also been realized. Pulliam et al., attached motion sensors to the

limbs and obtained data for six daily activities, such as eating and brushing teeth . Assessments of 13 patients
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with PD revealed that the ratings by ROC curves were consistent with the clinician’s UPDRS-III ratings of the video

recordings (ROC area > 0.8). Similarly, Hssayeni et al., measured tremor severity from activities of daily living with

wrist- and ankle-mounted three-axis gyroscopic sensors; results from 24 patients with PD displayed the maximum

correlation of 0.96 in gradient tree boosting . Researchers have proposed wearable sensors attached to the

wrist and chest combined with questionnaire-based assessment for continuous monitoring of PD symptoms in daily

life . Overlapping frequency components make it difficult to distinguish between daily activities and tremors;

nonetheless, a method has been proposed for detecting tremors using a two-step algorithm . Another device

that can detect PD hand tremors from daily movements is the PD-Watch . This device enables detection by

checking for movement frequency and supination–pronation characteristics. The index calculated from 24 h of data

obtained from this device was shown to correlate with the UPDRS score. Furthermore, a system was proposed as

a machine learning approach to detect tremors in daily life data using a CNN and other techniques from a wearable

accelerometer system worn on the wrist . This technology enabled the quantification of the number of tremors in

daily life. For a more user-friendly and complete sensor, researchers developed the biosensor patch NIMBLE

(MC10, Inc., Lexington, MA, USA) with an accelerometer and myoelectric system . It can adhere to the skin

using adhesive stickers. In addition, the measurements can be wirelessly transmitted to a smartphone or tablet and

a cloud server. Prediction scores using acquired data were within the range of ±1, with a probability of 91%.

Moreover, their adhesion and safety were evaluated. Such techniques may allow for better treatment by assessing

tremors at higher frequencies in daily activities.

5. Treatments for Tremor

5.1. DBS

DBS has been established as the standard of care for patients with movement disorders, such as PD, ET, and

dystonia. DBS is an effective and widely used treatment for these patients, and the majority of them achieve good

clinical results following surgery . DBS improves bradykinesia , gait freezing in PD , camptocormia

, and tremor . Moreover, it is a safer treatment with lower complication rates than stereotactic thalamotomy

. The subthalamic nucleus (STN) and internal globus pallidus (GPi) are the most common targets for PD

stimulation . A meta-analysis evaluating the effect of DBS on tremor suppression compared DBS ON and OFF

conditions and found a significant standardized difference mean effect (effect size = 0.36; 95% CI = 0.316–0.395; p

< 0.0001) . The sum of UPDRS III, items 20 and 21, was used for this measure. These results indicate moderate

effectiveness. Z-test results showed no significant difference in effect size between STN and GPi (p = 0.56). A 12-

month follow-up study also confirmed its effectiveness in reducing action/postural tremor and resting tremor .

The method of electrode placement is also important. Diffusion tensor imaging and tractography guided lead

placement have been shown to provide more stable placement and better tremor control compared to conventional

methods of lead placement . Other targets include the ventral intermediate nucleus of the thalamus (VIM),

caudal zona incerta, and posterior subthalamic area, which have a striking effect in improving tremors 

. Therefore, if tremor is the main problem, rather than bradykinesia for patients with PD, these targets are

warranted to be considered as first choice. A study of 98 patients with PD and ET showed sustained improvement
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in tremor scores (UPDRS III, items 20 and 21; Fahn–Tolosa–Marin Tremor Rating Scale) with VIM stimulation

(mean improvement, 70% and 66% at 1 year and 63% and 48% at >10 years, respectively, p < 0.05) . There

was no significant loss of a stimulation effect over time (p > 0.05). Thus, the effects of DBS are long-lasting. Tremor

can be controlled by maintaining the activities of daily living, and there was high patient satisfaction during the 10-

year follow-up . However, DBS is not effective in all patients, and patients need to determine whether they are

appropriate candidates.

aDBS

Advances in DBS technology are ongoing, and novel research and development are underway. aDBS is one of the

most innovative techniques. An aDBS device operates on the principle of closed-loop interaction, which can

determine the effect of stimulation and adjust it, in response to the observed effect. LFPs are used as biomarkers

to achieve a closed loop in aDBS. aDBS with LFPs has the advantage of being achieved by the online analysis of

deep brain recordings, without the need for additional measurement channels. It is effective and is currently being

used to treat patients with PD .

With regard to tremor suppression, an aDBS device has not been used clinically. Performing DBS only after the

appearance of symptoms may reduce battery consumption. Power consumption is important because battery

replacement requires surgery. aDBS necessitates the detection of tremors from the LFP. Reliable symptom

detection is important for the implementation of aDBS. Tremor-related activity occurs throughout the motor network

. Specifically, it includes the basal ganglia, thalamus, cerebellum, and primary motor cortex, which coherently

respond at tremor frequencies of 3–7 Hz upon their presentation . Other findings include an increase in low

gamma power (31–45 Hz)  and changes in high-frequency fluctuations in the subthalamic nucleus .

Advanced techniques, such as machine learning, are required to capture the aforementioned complex features.

Hirschmann et al., used a hidden Markov model to classify tremors . They obtained the LFP from the STN of 10

patients with PD, which was evaluated using four frequency domains (power at the individual tremor frequency ± 1

Hz, beta power, low gamma power, and high-frequency oscillations power ratio). The results indicated a mean area

under the ROC curve of 0.82 and a SD of 0.15. Furthermore, it displayed good accuracy, even without training, for

individual patients. High-frequency domain is the most useful feature for detecting tremors. Camara et al.,

developed a system that simultaneously recorded LFP in the subthalamic nucleus and electromyographic activity in

the forearm and used fuzzy inference to detect tremors based on the relationship between the signals . The

system displayed 100% accuracy in detecting tremors in four of 10 patients with PD and attained >98.7% accuracy

in seven patients.

The Optimization of Stimulation Parameters

The optimization of stimulation parameters is important for the efficient use of DBS. Setting general DBS

parameters often relies on subjective evaluation, which may not yield optimal effects. In addition, multiple

parameters, such as frequency, pulse width, and amplitude, must be set appropriately within the time constraints.

Thus, researchers proposed next-generation methods to quantify tremors using wearable sensors as objective

indicators for determining stimulation parameters. Pulliam et al., proposed an algorithm in which motion sensors,
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including accelerometers and gyroscopes, were attached to the fingers to acquire motion data, which were

subsequently used to set the DBS parameters . There were two algorithms, as follows: one to maximize the

treatment effect and the other to optimize the battery life. The algorithm that maximized the treatment effect

reduced motor symptoms by 13%; however, it increased the stimulus amplitude, compared with the usual setting

method. In contrast, the algorithm that optimized battery life successfully reduced the stimulus amplitude by an

average of 50% while maintaining the level of therapeutic effect. Currently, the intraoperative parameter setting is

subjectively performed. A system was developed to assist in electrode placement and test stimulus settings during

DBS implantation surgery for awake patients. The system facilitated the quantitative real-time visualization of

neural activity recorded by microelectrode and motor symptoms, such as tremors, recorded by an inertial

measurement unit during surgery . Dai et al., also developed a glove-type system that uses an inertial

measurement unit and force sensitive resistor to measure the immediate effects of DBS by tremors, bradykinesia,

and rigidity assessments . In addition, highly functional inertial sensors with conformal, wireless, and data

upload functions, and the Food and Drug Administration (FDA)-approved BioStamp nPoint, have been developed

. These technologies will realize next-generation methods of optimizing stimulation parameters in clinical

settings.

5.2. EMS

EMS Controlled by Motion Detectors

EMS, used to alleviate resting tremor, is based on modifications by changes in peripheral mechanical conditions,

external joint motion, or EMG . Jitkritsadakul et al., developed a glove-shaped portable device that detected

and suppressed tremors . It consisted of three components, as follows: a glove with an embedded inertial

sensor and an EMS module, a control box that can be worn on the waist belt, and an Android smartphone. An

inertial sensor attached to the glove was used to detect and stimulate tremors. EMS was performed via two

electrodes placed over the short thumb abductor muscle and the first and second dorsal skeletal muscles. They

evaluated the performance of this device using a double-blind, 1:1 pair-designed, randomized, placebo-controlled

design in 30 patients with PD. The tremor glove effectively suppressed intractable resting hand tremors in these

patients, without serious adverse events. Specifically, they identified a significant reduction in the root mean

squared angular velocity (as a percentage) in every axis, in peak magnitude in the axis (x-, y-), and in UPDRS

tremor scores (glove: 5.27 ± 2.19, sham: 4.93 ± 2.37) during stimulation with Tremor’s glove, compared with the

sham groups (p < 0.05, each). Gallego et al., developed a device that integrated neurostimulation electrodes,

gyroscopes, and control electronics . It analyzed the characteristics of the tremor (instantaneous amplitude and

frequency) from the gyroscope recordings and regulated the level of muscle co-contraction by injecting current into

the antagonist pair, as appropriate. They obtained significant attenuation of the tremor (p < 0.001) in patients with

PD and ET, reducing its amplitude to 52.33 ± 25.48%.

EMS Controlled by EMG Signals

Researchers have proposed a method for detecting tremors from the EMG signals of muscles. Dosen et al.,

proposed a method of detecting tremors from the EMG of the muscles causing the tremor and counteracting it by
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applying an out-of-phase electrical stimulation to a similar muscle . The device was evaluated in four and two

patients with PD and ET, respectively, and demonstrated an average tremor reduction of 46% to 81% and 35% to

48% in the five patients, respectively. In one patient, the system did not attenuate the tremor. Myoelectric sensors

implanted in muscles have been developed to improve diagnostic accuracy . The sensor can acquire EMG

signals near muscle fibers, and the implantable system ensures a stable relationship between the source and

electrodes. It has the advantage of being unaffected by external factors, such as sweat. Intramuscular electrodes

can be placed using a hypodermic needle. These electrodes usually have only the function of a single recording;

however, in recent years, investigators have developed multichannel electrodes made of thin polyimide films 

. In addition, a device that not only records, but also simultaneously stimulates, has been developed . It

was built on a polyimide substrate and comprises 12 recording sites and three stimulation sites made of platinum.

This device was tested on six patients with ET and three healthy participants to assess basic information, such as

perceptual thresholds and current limits. Furthermore, the application of this electrode to the system created by

Dosen et al.,  suppressed tremors and wrist angles by an average of 58%.

5.3. Other Devices

Tremor Suppression Using Orthosis

Several studies have used suppressive orthoses for tremor suppression  Herrnstadt and Menon developed

a one-degree-of-freedom elbow brace that can be worn by people with tremors . This system consisted of a

suppression motor, gears, sensors, including force transducers and encoders, and braces on the upper arm and

forearm. They evaluated the brace in nine patients diagnosed with mild to severe tremors, including PD, and

observed a 94.4% (p < 0.001) reduction in the mean power of the tremor . This type of tremor-suppression

device requires a power supply and is termed an active device. In contrast, researchers have developed passive

devices that operate by damping or absorbing vibration energy . Buki et al., developed a passive device based

on energy absorption, termed a Vib bracelet . This device absorbs vibrations in the frequency range associated

with tremors using the principle of a dynamic vibration absorber. This technology is widely used to absorb

vibrations caused by earthquakes in bridges and high-rise buildings. It has a simple structure, weighs 280 g, and

has a small and lightweight outer radius of 57 mm. The evaluation of the mechanical forearm enabled attenuation

of the vibration in the range of 4 Hz to 5.75 Hz, with an amplitude attenuation of 86% (approximately one in 7.3) at

4.75 Hz. Further performance improvement can be achieved by personalizing the device according to the

frequency of the tremor. Faizan et al., developed a passive bracelet-type device  that comprised a dual-parallel

configuration passive vibration absorber. Their theoretical evaluation revealed that the device reduced the

amplitude of angular motion of the wrist by 57.25%. Furthermore, an evaluation of patients with PD confirmed that

rectangular sketching partially improved the tremors while using the device. While most of these studies have

targeted wrist tremor, a glove-type device that independently controls tremor in each finger joint has also been

proposed . This device is designed to manage tremor in the index metacarpophalangeal joint, thumb

metacarpophalangeal joint, and the wrist. Results show overall suppression of 73.1%, 80.7%, and 85.5% in resting

tremor, 70.2%, 79.5%, and 81% in postural tremor, and 60.0%, 58.7%, and 65.0% in kinetic tremor in the index

finger metacarpophalangeal joint, the thumb metacarpophalangeal joint, and the wrist, respectively. In addition,
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Wanasinghe et al., developed a lighter and less bulky glove-type device based on layer jamming . When a

vacuum is supplied to the layer jamming elements, which contain a stack of attached layers, this device increases

the stiffness of the glove and suppresses hand tremor. An assessment of 11 tremor patients revealed mean

frequency power reductions of 41.74, 41.99, and 24.7% for the index and middle fingers and in grasping,

respectively, with a maximum power reduction of 59.15%. The above-mentioned studies are examples of reports

on the impacts of engineering solutions.

Tools with Tremor Control Function

Additional approaches include research that incorporates a mechanism to suppress unintended movements in

tools rather than the tremor itself. For example, researchers developed a tray to transport objects, which included a

vibration stabilization function . This tray includes a mechanical platform and an electronic system to suppress

the vibration of the base plate. It is stabilized by controlling three servomotors in a direction that counteracts the

changes based on the data acquired by the inertial sensors. Some tableware contains a tremor control function.

The Liftware Steady  (Liftware, Inc., San Francisco, CA, USA) comprises an electronically controlled stabilizing

handle and numerous attachments, including a spoon, fork, and spork, to facilitate eating for patients with tremors.

A pilot study demonstrated an improvement in tremor with the Liftwear Steady  using the Fahn–Tolosa–Marin

Tremor Rating Scale . In addition, investigators have attempted to use such spoons for tremor assessment

. The tremors were assessed using a linear model trained from motion signals that recorded the tremors. A

modified Fahn–Tolosa–Marin scale was used for the assessment, and the correlation coefficient between the

expert rating and the model score was 0.91 (p < 0.001). It demonstrated practical accuracy and can be used for

daily objective monitoring. In addition, technologies have been proposed to assist in computer mouse control .

This method uses adaptive path smoothing via the B-spline to provide a smooth mouse path.

6. Conclusions

Due to developments using state-of-the-art techniques, effectiveness in diagnosing and evaluating tremor and

suppressing it using these devices is satisfactorily high in many studies. However, other than DBS, no devices are

in practical use. To acquire high-level evidence, large-scale studies and randomized controlled trials are needed for

these devices.

References

1. Lang, A.E.; Lozano, A.M. Parkinson’s disease. Second of two parts. N. Engl. J. Med. 1998, 339,
1130–1143.

2. Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912.

3. Dubois, B.; Pillon, B. Cognitive deficits in parkinson’s disease. J. Neurol. 1997, 244, 2–8.

[128]

[129]

TM

TM

[130]

[131]

[132]



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 12/22

4. Kang, G.A.; Bronstein, J.M.; Masterman, D.L.; Redelings, M.; Crum, J.A.; Ritz, B. Clinical
characteristics in early parkinson’s disease in a central california population-based study. Mov.
Disord. 2005, 20, 1133–1142.

5. Xu, C.; Zhuang, P.; Hallett, M.; Zhang, Y.; Li, J.; Li, Y. Parkinson’s disease motor subtypes show
different responses to long-term subthalamic nucleus stimulation. Front. Hum. Neurosci. 2018, 12,
365.

6. Louis, E.D.; McCreary, M. How common is essential tremor? Update on the worldwide prevalence
of essential tremor. Tremor Other Hyperkinet. Mov. 2021, 11, 28.

7. Wenning, G.K.; Kiechl, S.; Seppi, K.; Muller, J.; Hogl, B.; Saletu, M.; Rungger, G.; Gasperi, A.;
Willeit, J.; Poewe, W. Prevalence of movement disorders in men and women aged 50-89 years
(bruneck study cohort): A population-based study. Lancet Neurol. 2005, 4, 815–820.

8. Deuschl, G.; Raethjen, J.; Lindemann, M.; Krack, P. The pathophysiology of tremor. Muscle Nerve
2001, 24, 716–735.

9. Bhatia, K.P.; Bain, P.; Bajaj, N.; Elble, R.J.; Hallett, M.; Louis, E.D.; Raethjen, J.; Stamelou, M.;
Testa, C.M.; Deuschl, G.; et al. Consensus statement on the classification of tremors. From the
task force on tremor of the international parkinson and movement disorder society. Mov. Disord.
2018, 33, 75–87.

10. Elble, R.; Comella, C.; Fahn, S.; Hallett, M.; Jankovic, J.; Juncos, J.L.; Lewitt, P.; Lyons, K.; Ondo,
W.; Pahwa, R.; et al. Reliability of a new scale for essential tremor. Mov. Disord. 2012, 27, 1567–
1569.

11. Fahn, S.; Tolosa, E.; Conceppcion, M. Clinical Rating Scale for Tremor; Williams and Wilkins:
Baltimore, MD, USA, 1993.

12. Martinez-Martin, P.; Gil-Nagel, A.; Gracia, L.M.; Gomez, J.B.; Martinez-Sarries, J.; Bermejo, F.
Unified parkinson’s disease rating scale characteristics and structure. The cooperative
multicentric group. Mov. Disord. 1994, 9, 76–83.

13. Thenganatt, M.A.; Louis, E.D. Distinguishing essential tremor from Parkinson’s disease: Bedside
tests and laboratory evaluations. Expert Rev. Neurother. 2012, 12, 687–696.

14. Jain, S.; Lo, S.E.; Louis, E.D. Common misdiagnosis of a common neurological disorder: How are
we misdiagnosing essential tremor? Arch. Neurol. 2006, 63, 1100–1104.

15. Di Lazzaro, G.; Ricci, M.; Al-Wardat, M.; Schirinzi, T.; Scalise, S.; Giannini, F.; Mercuri, N.B.;
Saggio, G.; Pisani, A. Technology-based objective measures detect subclinical axial signs in
untreated, de novo parkinson’s disease. J. Park. Dis 2020, 10, 113–122.

16. Channa, A.; Ifrim, R.C.; Popescu, D.; Popescu, N. A-wear bracelet for detection of hand tremor
and bradykinesia in parkinson’s patients. Sensors 2021, 21, 981.



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 13/22

17. Kostikis, N.; Hristu-Varsakelis, D.; Arnaoutoglou, M.; Kotsavasiloglou, C. A smartphone-based tool
for assessing parkinsonian hand tremor. IEEE J. Biomed. Health Inform. 2015, 19, 1835–1842.

18. Varghese, J.; Fujarski, M.; Hahn, T.; Dugas, M.; Warnecke, T. The smart device system for
movement disorders: Preliminary evaluation of diagnostic accuracy in a prospective study. Stud.
Health Technol. Inform. 2020, 270, 889–893.

19. Varghese, J.; Alen, C.M.V.; Fujarski, M.; Schlake, G.S.; Sucker, J.; Warnecke, T.; Thomas, C.
Sensor validation and diagnostic potential of smartwatches in movement disorders. Sensors
2021, 21, 3139.

20. Kyritsis, K.; Fagerberg, P.; Ioakimidis, I.; Klingelhoefer, L.; Reichmann, H.; Delopoulos, A. Using
imu sensors to assess motor degradation of pd patients by modeling in-meal plate-to-mouth
movement elongation. In Proceedings of the 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July
2020; pp. 494–497.

21. Junior, E.P.; Delmiro, I.L.D.; Magaia, N.; Maia, F.M.; Hassan, M.M.; Albuquerque, V.H.C.; Fortino,
G. Intelligent sensory pen for aiding in the diagnosis of parkinson’s disease from dynamic
handwriting analysis. Sensors 2020, 20, 5840.

22. Asenbaum, S.; Pirker, W.; Angelberger, P.; Bencsits, G.; Pruckmayer, M.; Brucke, T. beta-cit and
spect in essential tremor and parkinson’s disease. J. Neural Transm. 1998, 105, 1213–1228.

23. Benamer, T.S.; Patterson, J.; Grosset, D.G.; Booij, J.; de Bruin, K.; van Royen, E.; Speelman,
J.D.; Horstink, M.H.; Sips, H.J.; Dierckx, R.A.; et al. Accurate differentiation of parkinsonism and
essential tremor using visual assessment of -fp-cit spect imaging: The -fp-cit study group. Mov.
Disord. 2000, 15, 503–510.

24. Parkinson Study, G. A multicenter assessment of dopamine transporter imaging with
dopascan/spect in parkinsonism. 2000. Neurology 2001, 57, S52–S59.

25. de la Fuente-Fernandez, R. Role of datscan and clinical diagnosis in parkinson disease.
Neurology 2012, 78, 696–701.

26. Thanawattano, C.; Pongthornseri, R.; Anan, C.; Dumnin, S.; Bhidayasiri, R. Temporal fluctuations
of tremor signals from inertial sensor: A preliminary study in differentiating parkinson’s disease
from essential tremor. Biomed. Eng. Online 2015, 14, 101.

27. Wile, D.J.; Ranawaya, R.; Kiss, Z.H. Smart watch accelerometry for analysis and diagnosis of
tremor. J. Neurosci Methods 2014, 230, 1–4.

28. Hossen, A.; Muthuraman, M.; Al-Hakim, Z.; Raethjen, J.; Deuschl, G.; Heute, U. Discrimination of
parkinsonian tremor from essential tremor using statistical signal characterization of the spectrum
of accelerometer signal. Biomed. Mater. Eng. 2013, 23, 513–531.



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 14/22

29. Muthuraman, M.; Hossen, A.; Heute, U.; Deuschl, G.; Raethjen, J. A new diagnostic test to
distinguish tremulous Parkinson’s disease from advanced essential tremor. Mov. Disord. 2011,
26, 1548–1552.

30. Woods, A.M.; Nowostawski, M.; Franz, E.A.; Purvis, M. Parkinson’s disease and essential tremor
classification on mobile device. Pervasive Mob. Comput. 2014, 13, 1–12.

31. Bhidayasiri, R.; Petchrutchatachart, S.; Pongthornseri, R.; Anan, C.; Dumnin, S.; Thanawattano,
C. Low-cost, 3-dimension, office-based inertial sensors for automated tremor assessment:
Technical development and experimental verification. J. Park. Dis. 2014, 4, 273–282.

32. Locatelli, P.; Alimonti, D.; Traversi, G.; Re, V. Classification of essential tremor and parkinson’s
tremor based on a low-power wearable device. Electronics 2020, 9, 1695.

33. Barrantes, S.; Sanchez Egea, A.J.; Gonzalez Rojas, H.A.; Marti, M.J.; Compta, Y.; Valldeoriola, F.;
Simo Mezquita, E.; Tolosa, E.; Valls-Sole, J. Differential diagnosis between parkinson’s disease
and essential tremor using the smartphone’s accelerometer. PLoS ONE 2017, 12, e0183843.

34. Loaiza Duque, J.D.; Gonzalez-Vargas, A.M.; Sanchez Egea, A.J.; Gonzalez Rojas, H.A. Using
machine learning and accelerometry data for differential diagnosis of Parkinson’s disease and
essential tremor. In Applied Computer Sciences in Engineering. Wea 2019. Communications in
Computer and Information Science; Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza,
S., Orjuela-Cañon, A., Díaz-Gutierrez, Y., Eds.; Springer: Cham, Switzerland, 2019.

35. Moon, S.; Song, H.J.; Sharma, V.D.; Lyons, K.E.; Pahwa, R.; Akinwuntan, A.E.; Devos, H.
Classification of parkinson’s disease and essential tremor based on balance and gait
characteristics from wearable motion sensors via machine learning techniques: A data-driven
approach. J. Neuroeng. Rehabil. 2020, 17, 125.

36. Nistico, R.; Pirritano, D.; Salsone, M.; Novellino, F.; Del Giudice, F.; Morelli, M.; Trotta, M.; Bilotti,
G.; Condino, F.; Cherubini, A.; et al. Synchronous pattern distinguishes resting tremor associated
with essential tremor from rest tremor of parkinson’s disease. Park. Relat. Disord. 2011, 17, 30–
33.

37. Vescio, B.; Nistico, R.; Augimeri, A.; Quattrone, A.; Crasa, M.; Quattrone, A. Development and
validation of a new wearable mobile device for the automated detection of resting tremor in
parkinson’s disease and essential tremor. Diagnostics 2021, 11, 200.

38. Raethjen, J.; Govindan, R.B.; Muthuraman, M.; Kopper, F.; Volkmann, J.; Deuschl, G. Cortical
correlates of the basic and first harmonic frequency of parkinsonian tremor. Clin. Neurophysiol.
2009, 120, 1866–1872.

39. Zhang, B.; Huang, F.; Liu, J.; Zhang, D. A novel posture for better differentiation between
parkinson’s tremor and essential tremor. Front. Neurosci. 2018, 12, 317.



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 15/22

40. Hess, C.W.; Pullman, S.L. Tremor: Clinical phenomenology and assessment techniques. Tremor
Other Hyperkinet. Mov. 2012, 2, tre-02-65-365-1.

41. Meigal, A.Y.; Rissanen, S.M.; Tarvainen, M.P.; Airaksinen, O.; Kankaanpaa, M.; Karjalainen, P.A.
Non-linear emg parameters for differential and early diagnostics of parkinson’s disease. Front.
Neurol. 2013, 4, 135.

42. Dai, H.; Cai, G.; Lin, Z.; Wang, Z.; Ye, Q. Validation of inertial sensing-based wearable device for
tremor and bradykinesia quantification. IEEE J. Biomed. Health Inform. 2021, 25, 997–1005.

43. Marino, S.; Cartella, E.; Donato, N.; Muscara, N.; Sorbera, C.; Cimino, V.; De Salvo, S.; Micchia,
K.; Silvestri, G.; Bramanti, A.; et al. Quantitative assessment of parkinsonian tremor by using
biosensor device. Medicine 2019, 98, e17897.

44. Delrobaei, M.; Memar, S.; Pieterman, M.; Stratton, T.W.; McIsaac, K.; Jog, M. Towards remote
monitoring of Parkinson’s disease tremor using wearable motion capture systems. J. Neurol. Sci.
2018, 384, 38–45.

45. Kocer, A.; Oktay, A.B. Nintendo wii assessment of hoehn and yahr score with Parkinson’s disease
tremor. Technol. Health Care 2016, 24, 185–191.

46. Bhavana, C.; Gopal, J.; Raghavendra, P.; Vanitha, K.M.; Talasila, V. Techniques of measurement
for Parkinson’s tremor highlighting advantages of embedded imu over emg. In Proceedings of the
IEEE: 2016 International Conference on Recent Trends in Information Technology (ICRTIT),
Chennai, India, 8–9 April 2016.

47. Rigas, G.; Tzallas, A.T.; Tsipouras, M.G.; Bougia, P.; Tripoliti, E.E.; Baga, D.; Fotiadis, D.I.; Tsouli,
S.G.; Konitsiotis, S. Assessment of tremor activity in the parkinson’s disease using a set of
wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 478–487.

48. Cai, G.; Lin, Z.; Dai, H.; Xia, X.; Xiong, Y.; Horng, S.J.; Lueth, T.C. Quantitative assessment of
parkinsonian tremor based on a linear acceleration extraction algorithm. Biomed. Signal. Process.
Control. 2018, 42, 53–62.

49. Kim, H.B.; Lee, W.W.; Kim, A.; Lee, H.J.; Park, H.Y.; Jeon, H.S.; Kim, S.K.; Jeon, B.; Park, K.S.
Wrist sensor-based tremor severity quantification in Parkinson’s disease using convolutional
neural network. Comput. Biol. Med. 2018, 95, 140–146.

50. Wu, H.; Zhang, Y.; Wu, X.; Yang, F. Assessment of upper limb tremors in patients with parkinson’s
disease based on displacement and acceleration information. In Proceedings of the 5th
International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian,
China, 19–20 September 2020; pp. 177–182.

51. Ranjan, R.; Bhushan, B.; Palaniswami, M.; Verma, A. A convolutional neural network approach for
quantification of tremor severity in neurological movement disorders. In Intelligent Systems and



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 16/22

Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing; Arai, K., Kapoor,
S., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2021; Volume 1252.

52. Sanchez-Perez, L.A.; Sanchez-Fernandez, L.P.; Shaout, A.; Martinez-Hernandez, J.M.; Alvarez-
Noriega, M.J. Rest tremor quantification based on fuzzy inference systems and wearable sensors.
Int. J. Med. Inform. 2018, 114, 6–17.

53. Garza-Rodríguez, A.; Sánchez-Fernández, L.P.; Sánchez-Pérez, L.A.; Ornelas-Vences, C.;
Ehrenberg-Inzunza, M. Pronation and supination analysis based on biomechanical signals from
parkinson’s disease patients. Artif. Intell. Med. 2018, 84, 7–22.

54. Ferencik, N.; Jascur, M.; Bundzel, M.; Cavallo, F. The rehapiano-detecting, measuring, and
analyzing action tremor using strain gauges. Sensors 2020, 20, 663.

55. Zajki-Zechmeister, T.; Kogl, M.; Kalsberger, K.; Franthal, S.; Homayoon, N.; Katschnig-Winter, P.;
Wenzel, K.; Zajki-Zechmeister, L.; Schwingenschuh, P. Quantification of tremor severity with a
mobile tremor pen. Heliyon 2020, 6, e04702.

56. Lemoyne, R.; Mastroianni, T.; Cozza, M.; Coroian, C.; Grundfest, W. Implementation of an iphone
for characterizing parkinson’s disease tremor through a wireless accelerometer application. In
Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine
and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4954–4958.

57. Araujo, R.; Tabuas-Pereira, M.; Almendra, L.; Ribeiro, J.; Arenga, M.; Negrao, L.; Matos, A.;
Morgadinho, A.; Januario, C. Tremor frequency assessment by iphone(r) applications: Correlation
with emg analysis. J. Park. Dis. 2016, 6, 717–721.

58. Bermeo, A.; Bravo, M.; Huerta, M.; Soto, A. A system to monitor tremors in patients with
Parkinson’s disease. In Proceedings of the 2016 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August
2016; pp. 5007–5010.

59. Papadopoulos, A.; Kyritsis, K.; Klingelhoefer, L.; Bostanjopoulou, S.; Chaudhuri, K.R.; Delopoulos,
A. Detecting parkinsonian tremor from imu data collected in-the-wild using deep multiple-instance
learning. IEEE J. Biomed. Health Inform. 2020, 24, 2559–2569.

60. van Brummelen, E.M.J.; Ziagkos, D.; de Boon, W.M.I.; Hart, E.P.; Doll, R.J.; Huttunen, T.;
Kolehmainen, P.; Groeneveld, G.J. Quantification of tremor using consumer product
accelerometry is feasible in patients with essential tremor and Parkinson’s disease: A comparative
study. J. Clin. Mov. Disord. 2020, 7, 4.

61. Lopez-Blanco, R.; Velasco, M.A.; Mendez-Guerrero, A.; Romero, J.P.; Del Castillo, M.D.; Serrano,
J.I.; Rocon, E.; Benito-Leon, J. Smartwatch for the analysis of rest tremor in patients with
parkinson’s disease. J. Neurol. Sci. 2019, 401, 37–42.



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 17/22

62. Sigcha, L.; Pavon, I.; Costa, N.; Costa, S.; Gago, M.; Arezes, P.; Lopez, J.M.; Arcas, G. Automatic
resting tremor assessment in parkinson’s disease using smartwatches and multitask convolutional
neural networks. Sensors 2021, 21, 291.

63. Shawen, N.; O’Brien, M.K.; Venkatesan, S.; Lonini, L.; Simuni, T.; Hamilton, J.L.; Ghaffari, R.;
Rogers, J.A.; Jayaraman, A. Role of data measurement characteristics in the accurate detection
of parkinson’s disease symptoms using wearable sensors. J. Neuroeng. Rehabil. 2020, 17, 52.

64. Heldman, D.A.; Giuffrida, J.P.; Cubo, E. Wearable sensors for advanced therapy referral in
Parkinson’s disease. J. Park. Dis. 2016, 6, 631–638.

65. Mera, T.O.; Heldman, D.A.; Espay, A.J.; Payne, M.; Giuffrida, J.P. Feasibility of home-based
automated Parkinson’s disease motor assessment. J. Neurosci. Methods 2012, 203, 152–156.

66. Pulliam, C.L.; Heldman, D.A.; Brokaw, E.B.; Mera, T.O.; Mari, Z.K.; Burack, M.A. Continuous
assessment of levodopa response in Parkinson’s disease using wearable motion sensors. IEEE
Trans. Biomed. Eng. 2018, 65, 159–164.

67. Hssayeni, M.D.; Jimenez-Shahed, J.; Burack, M.A.; Ghoraani, B. Wearable sensors for estimation
of parkinsonian tremor severity during free body movements. Sensors 2019, 19, 4215.

68. Heijmans, M.; Habets, J.; Kuijf, M.; Kubben, P.; Herff, C. Evaluation of parkinson’s disease at
home: Predicting tremor from wearable sensors. In Proceedings of the 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Berlin, Germany, 23–27 July 2019; pp. 584–587.

69. McNames, J.; Shah, V.V.; Mancini, M.; Curtze, C.; El-Gohary, M.; Aboy, M.; Carlson-Kuhta, P.;
Nutt, J.G.; Horak, F. A two-stage tremor detection algorithm for wearable inertial sensors during
normal daily activities. In Proceedings of the 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019;
pp. 2535–2538.

70. Battista, L.; Romaniello, A. A wearable tool for selective and continuous monitoring of tremor and
dyskinesia in parkinsonian patients. Park. Relat. Disord. 2020, 77, 43–47.

71. San-Segundo, R.; Zhang, A.; Cebulla, A.; Panev, S.; Tabor, G.; Stebbins, K.; Massa, R.E.;
Whitford, A.; de la Torre, F.; Hodgins, J. Parkinson’s disease tremor detection in the wild using
wearable accelerometers. Sensors 2020, 20, 5817.

72. Boroojerdi, B.; Ghaffari, R.; Mahadevan, N.; Markowitz, M.; Melton, K.; Morey, B.; Otoul, C.; Patel,
S.; Phillips, J.; Sen-Gupta, E.; et al. Clinical feasibility of a wearable, conformable sensor patch to
monitor motor symptoms in parkinson’s disease. Parkinsonism Relat. Disord. 2019, 61, 70–76.

73. Kleiner-Fisman, G.; Herzog, J.; Fisman, D.N.; Tamma, F.; Lyons, K.E.; Pahwa, R.; Lang, A.E.;
Deuschl, G. Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of
outcomes. Mov. Disord. 2006, 21 (Suppl. 14), S290–S304.



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 18/22

74. Benabid, A.L.; Chabardes, S.; Mitrofanis, J.; Pollak, P. Deep brain stimulation of the subthalamic
nucleus for the treatment of parkinson’s disease. Lancet Neurol. 2009, 8, 67–81.

75. Bronstein, J.M.; Tagliati, M.; Alterman, R.L.; Lozano, A.M.; Volkmann, J.; Stefani, A.; Horak, F.B.;
Okun, M.S.; Foote, K.D.; Krack, P.; et al. Deep brain stimulation for parkinson disease: An expert
consensus and review of key issues. Arch. Neurol. 2011, 68, 165.

76. Krack, P.; Batir, A.; Van Blercom, N.; Chabardes, S.; Fraix, V.; Ardouin, C.; Koudsie, A.; Limousin,
P.D.; Benazzouz, A.; LeBas, J.F.; et al. Five-year follow-up of bilateral stimulation of the
subthalamic nucleus in advanced parkinson’s disease. N. Engl. J. Med. 2003, 349, 1925–1934.

77. Huang, C.; Chu, H.; Zhang, Y.; Wang, X. Deep brain stimulation to alleviate freezing of gait and
cognitive dysfunction in parkinson’s disease: Update on current research and future perspectives.
Front. Neurosci. 2018, 12, 29.

78. Sako, W.; Nishio, M.; Maruo, T.; Shimazu, H.; Matsuzaki, K.; Tamura, T.; Mure, H.; Ushio, Y.;
Nagahiro, S.; Kaji, R.; et al. Subthalamic nucleus deep brain stimulation for camptocormia
associated with parkinson’s disease. Mov. Disord. 2009, 24, 1076–1079.

79. Chan, A.K.; Chan, A.Y.; Lau, D.; Durcanova, B.; Miller, C.A.; Larson, P.S.; Starr, P.A.; Mummaneni,
P.V. Surgical management of camptocormia in parkinson’s disease: Systematic review and meta-
analysis. J. Neurosurg. 2018, 131, 368–375.

80. Morigaki, R.N.S.; Kaji, R.; Goto, S. Thalamic deep brain stimulation for parkinson’s disease. In
Diagnosis and Treatment of Parkinson’s Disease; Rana, A.Q., Ed.; InTech Open: London, UK,
2011; pp. 233–252.

81. Tasker, R.R. Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg.
Neurol. 1998, 49, 145–153.

82. Pahwa, R.; Lyons, K.E.; Wilkinson, S.B.; Troster, A.I.; Overman, J.; Kieltyka, J.; Koller, W.C.
Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor. Mov.
Disord. 2001, 16, 140–143.

83. Sako, W.; Miyazaki, Y.; Izumi, Y.; Kaji, R. Which target is best for patients with Parkinson’s
disease? A meta-analysis of pallidal and subthalamic stimulation. J. Neurol. Neurosurg.
Psychiatry 2014, 85, 982–986.

84. Wong, J.K.; Cauraugh, J.H.; Ho, K.W.D.; Broderick, M.; Ramirez-Zamora, A.; Almeida, L.; Wagle
Shukla, A.; Wilson, C.A.; de Bie, R.M.; Weaver, F.M.; et al. Stn vs. Gpi deep brain stimulation for
tremor suppression in parkinson disease: A systematic review and meta-analysis. Parkinsonism
Relat. Disord. 2019, 58, 56–62.

85. Wong, J.K.; Viswanathan, V.T.; Nozile-Firth, K.S.; Eisinger, R.S.; Leone, E.L.; Desai, A.M.; Foote,
K.D.; Ramirez-Zamora, A.; Okun, M.S.; Wagle Shukla, A. Stn versus gpi deep brain stimulation for
action and rest tremor in Parkinson’s disease. Front. Hum. Neurosci. 2020, 14, 578615.



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 19/22

86. Low, H.L.; Ismail, M.; Taqvi, A.; Deeb, J.; Fuller, C.; Misbahuddin, A. Comparison of posterior
subthalamic area deep brain stimulation for tremor using conventional landmarks versus directly
targeting the dentatorubrothalamic tract with tractography. Clin. Neurol. Neurosurg. 2019, 185,
105466.

87. Morigaki, R.; Nagahiro, S.; Kaji, R.; Goto, S. Current use of thalamic surgeries for treating
movement disorders. In Thalamus: Anatomy, Functions and Disorders; Song, J.L., Ed.; Nova
Science Publishers, Inc.: New York, NY, USA, 2011; pp. 1–31.

88. Koller, W.C.; Pahwa, R.; Lyons, K.E.; Albanese, A. Surgical treatment of Parkinson’s disease. J.
Neurol. Sci 1999, 167, 1–10.

89. Kitagawa, M.; Murata, J.; Uesugi, H.; Kikuchi, S.; Saito, H.; Tashiro, K.; Sawamura, Y. Two-year
follow-up of chronic stimulation of the posterior subthalamic white matter for tremor-dominant
Parkinson’s disease. Neurosurgery 2005, 56, 281–289.

90. Plaha, P.; Ben-Shlomo, Y.; Patel, N.K.; Gill, S.S. Stimulation of the caudal zona incerta is superior
to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 2006,
129, 1732–1747.

91. Dallapiazza, R.F.; Lee, D.J.; De Vloo, P.; Fomenko, A.; Hamani, C.; Hodaie, M.; Kalia, S.K.;
Fasano, A.; Lozano, A.M. Outcomes from stereotactic surgery for essential tremor. J. Neurol.
Neurosurg. Psychiatry 2019, 90, 474–482.

92. Cury, R.G.; Fraix, V.; Castrioto, A.; Perez Fernandez, M.A.; Krack, P.; Chabardes, S.; Seigneuret,
E.; Alho, E.J.L.; Benabid, A.L.; Moro, E. Thalamic deep brain stimulation for tremor in parkinson
disease, essential tremor, and dystonia. Neurology 2017, 89, 1416–1423.

93. Hitti, F.L.; Ramayya, A.G.; McShane, B.J.; Yang, A.I.; Vaughan, K.A.; Baltuch, G.H. Long-term
outcomes following deep brain stimulation for parkinson’s disease. J. Neurosurg. 2019, 32, 205–
210.

94. Marceglia, S.; Fiorio, M.; Foffani, G.; Mrakic-Sposta, S.; Tiriticco, M.; Locatelli, M.; Caputo, E.;
Tinazzi, M.; Priori, A. Modulation of beta oscillations in the subthalamic area during action
observation in Parkinson’s disease. Neuroscience 2009, 161, 1027–1036.

95. Giannicola, G.; Marceglia, S.; Rossi, L.; Mrakic-Sposta, S.; Rampini, P.; Tamma, F.; Cogiamanian,
F.; Barbieri, S.; Priori, A. The effects of levodopa and ongoing deep brain stimulation on
subthalamic beta oscillations in Parkinson’s disease. Exp. Neurol. 2010, 226, 120–127.

96. Little, S.; Pogosyan, A.; Neal, S.; Zavala, B.; Zrinzo, L.; Hariz, M.; Foltynie, T.; Limousin, P.;
Ashkan, K.; FitzGerald, J.; et al. Adaptive deep brain stimulation in advanced parkinson disease.
Ann. Neurol. 2013, 74, 449–457.

97. Sasaki, F.; Oyama, G.; Sekimoto, S.; Nuermaimaiti, M.; Iwamuro, H.; Shimo, Y.; Umemura, A.;
Hattori, N. Closed-loop programming using external responses for deep brain stimulation in



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 20/22

Parkinson’s disease. Park. Relat. Disord. 2021, 84, 47–51.

98. Timmermann, L.; Gross, J.; Dirks, M.; Volkmann, J.; Freund, H.J.; Schnitzler, A. The cerebral
oscillatory network of parkinsonian resting tremor. Brain 2003, 126, 199–212.

99. Helmich, R.C.; Janssen, M.J.; Oyen, W.J.; Bloem, B.R.; Toni, I. Pallidal dysfunction drives a
cerebellothalamic circuit into parkinson tremor. Ann. Neurol. 2011, 69, 269–281.

100. Hirschmann, J.; Hartmann, C.J.; Butz, M.; Hoogenboom, N.; Ozkurt, T.E.; Elben, S.; Vesper, J.;
Wojtecki, L.; Schnitzler, A. A direct relationship between oscillatory subthalamic nucleus-cortex
coupling and rest tremor in Parkinson’s disease. Brain 2013, 136, 3659–3670.

101. Weinberger, M.; Hutchison, W.D.; Lozano, A.M.; Hodaie, M.; Dostrovsky, J.O. Increased gamma
oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. J.
Neurophysiol. 2009, 101, 789–802.

102. Beudel, M.; Little, S.; Pogosyan, A.; Ashkan, K.; Foltynie, T.; Limousin, P.; Zrinzo, L.; Hariz, M.;
Bogdanovic, M.; Cheeran, B.; et al. Tremor reduction by deep brain stimulation is associated with
gamma power suppression in Parkinson’s disease. Neuromodulation 2015, 18, 349–354.

103. Hirschmann, J.; Butz, M.; Hartmann, C.J.; Hoogenboom, N.; Ozkurt, T.E.; Vesper, J.; Wojtecki, L.;
Schnitzler, A. Parkinsonian rest tremor is associated with modulations of subthalamic high-
frequency oscillations. Mov. Disord. 2016, 31, 1551–1559.

104. Hirschmann, J.; Schoffelen, J.M.; Schnitzler, A.; van Gerven, M.A.J. Parkinsonian rest tremor can
be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus.
Clin. Neurophysiol. 2017, 128, 2029–2036.

105. Camara, C.; Warwick, K.; Bruna, R.; Aziz, T.; del Pozo, F.; Maestu, F. A fuzzy inference system for
closed-loop deep brain stimulation in parkinson’s disease. J. Med. Syst. 2015, 39, 155.

106. Pulliam, C.L.; Heldman, D.A.; Orcutt, T.H.; Mera, T.O.; Giuffrida, J.P.; Vitek, J.L. Motion sensor
strategies for automated optimization of deep brain stimulation in parkinson’s disease. Park.
Relat. Disord. 2015, 21, 378–382.

107. Schaeffer, E.L.; Liu, D.Y.; Guerin, J.; Ahn, M.; Lee, S.; Asaad, W.F. A low-cost solution for
quantification of movement during dbs surgery. J. Neurosci. Methods 2018, 303, 136–145.

108. Dai, H.; Otten, B.; Mehrkens, J.H.; D’Angelo, L.T.; Lueth, T.C. A novel glove monitoring system
used to quantify neurological symptoms during deep-brain stimulation surgery. IEEE Sens. J.
2013, 13, 3193–3202.

109. LeMoyne, R.; Mastroianni, T.; Whiting, D.; Tomycz, N. Parametric evaluation of deep brain
stimulation parameter configurations for Parkinson’s disease using a conformal wearable and
wireless inertial sensor system and machine learning. In Proceedings of the 2020 42nd Annual



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 21/22

International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
Montreal, QC, Canada, 20–24 July 2020; pp. 3606–3611.

110. Rack, P.M.; Ross, H.F. The role of reflexes in the resting tremor of Parkinson’s disease. Brain
1986, 109 Pt 1, 115–141.

111. Jitkritsadakul, O.; Thanawattano, C.; Anan, C.; Bhidayasiri, R. Tremor’s glove-an innovative
electrical muscle stimulation therapy for intractable tremor in parkinson’s disease: A randomized
sham-controlled trial. J. Neurol. Sci. 2017, 381, 331–340.

112. Gallego, J.A.; Rocon, E.; Belda-Lois, J.M.; Pons, J.L. A neuroprosthesis for tremor management
through the control of muscle co-contraction. J. Neuroeng. Rehabil. 2013, 10, 36.

113. Dosen, S.; Muceli, S.; Dideriksen, J.L.; Romero, J.P.; Rocon, E.; Pons, J.; Farina, D. Online
tremor suppression using electromyography and low-level electrical stimulation. IEEE Trans.
Neural Syst. Rehabil. Eng. 2015, 23, 385–395.

114. Cipriani, C.; Segil, J.L.; Birdwell, J.A.; ff Weir, R.F. Dexterous control of a prosthetic hand using
fine-wire intramuscular electrodes in targeted extrinsic muscles. IEEE Trans. Neural Syst.
Rehabil. Eng. 2014, 22, 828–836.

115. Muceli, S.; Bergmeister, K.D.; Hoffmann, K.P.; Aman, M.; Vukajlija, I.; Aszmann, O.C.; Farina, D.
Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted
muscle reinnervation. J. Neural Eng. 2019, 16, 016010.

116. Muceli, S.; Poppendieck, W.; Negro, F.; Yoshida, K.; Hoffmann, K.P.; Butler, J.E.; Gandevia, S.C.;
Farina, D. Accurate and representative decoding of the neural drive to muscles in humans with
multi-channel intramuscular thin-film electrodes. J. Physiol. 2015, 593, 3789–3804.

117. Luu, B.L.; Muceli, S.; Saboisky, J.P.; Farina, D.; Heroux, M.E.; Bilston, L.E.; Gandevia, S.C.;
Butler, J.E. Motor unit territories in human genioglossus estimated with multichannel
intramuscular electrodes. J. Appl. Physiol. 2018, 124, 664–671.

118. Muceli, S.; Poppendieck, W.; Hoffmann, K.P.; Dosen, S.; Benito-Leon, J.; Barroso, F.O.; Pons,
J.L.; Farina, D. A thin-film multichannel electrode for muscle recording and stimulation in
neuroprosthetics applications. J. Neural Eng. 2019, 16, 026035.

119. Hosseini, S.M.; Kalhori, H.; Al-Jumaily, A. Active vibration control in human forearm model using
paired piezoelectric sensor and actuator. J. Vib. Control. 2020, 27, 2231–2242.

120. Zahedi, A.; Zhang, B.; Yi, A.; Zhang, D. A soft exoskeleton for tremor suppression equipped with
flexible semiactive actuator. Soft Robot. 2021, 8, 432–447.

121. Herrnstadt, G.; Menon, C. Voluntary-driven elbow orthosis with speed-controlled tremor
suppression. Front. Bioeng. Biotechnol. 2016, 4, 29.



Tremor in Parkinson’s Disease with Mechanical Devices | Encyclopedia.pub

https://encyclopedia.pub/entry/39816 22/22

122. Herrnstadt, G.; McKeown, M.J.; Menon, C. Controlling a motorized orthosis to follow elbow
volitional movement: Tests with individuals with pathological tremor. J. Neuroeng. Rehabil. 2019,
16, 23.

123. Masoumi, M.; Kmanzi, S.; Wang, H.; Mohammadi, H. Design and fabrication of a novel passive
hand tremor attenuator. J. Med. Eng. Technol. 2021, 45, 597–605.

124. Buki, E.; Katz, R.; Zacksenhouse, M.; Schlesinger, I. Vib-bracelet: A passive absorber for
attenuating forearm tremor. Med. Biol. Eng. Comput. 2018, 56, 923–930.

125. Faizan, M.S.; Muzammil, M. Hand tremor suppression device for patients suffering from
parkinson’s disease. J. Med. Eng Technol. 2020, 44, 190–197.

126. Zhou, Y.; Ibrahim, A.; Hardy, K.G.; Jenkins, M.E.; Naish, M.D.; Trejos, A.L. Design and preliminary
performance assessment of a wearable tremor suppression glove. IEEE Trans. Biomed. Eng.
2021, 68, 2846–2857.

127. Zhou, Y.; Jenkins, M.E.; Naish, M.D.; Trejos, A.L. Development of a wearable tremor suppression
glove. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and
Biomechatronics (BIOROB), Enschede, The Netherlands, 26–29 August 2018; pp. 640–645.

128. Wanasinghe, A.T.; Awantha, W.V.I.; Kavindya, A.G.P.; Kulasekera, A.L.; Chathuranga, D.S.;
Senanayake, B. A layer jamming soft glove for hand tremor suppression. IEEE Trans. Neural
Syst. Rehabil. Eng. 2021, 29, 2684–2694.

129. Fraiwan, L.; Amir, S.; Ahmed, F.; Halepota, J. Design of a stabilisation platform for Parkinson’s
disease patient. J. Med. Eng. Technol. 2018, 42, 43–51.

130. Sabari, J.; Stefanov, D.G.; Chan, J.; Goed, L.; Starr, J. Adapted feeding utensils for people with
parkinson’s-related or essential tremor. Am. J. Occup. Ther. 2019, 73, 7302205120p1–
7302205120p9.

131. Miocinovic, S.; Shoeb, A.H.; Wang, S.; Byrd, E.A.; Swann, N.C.; Pathak, A.; Ostrem, J.L. Clinical
tremor severity estimation using an instrumented eating utensil. J. Park. Dis. 2017, 7, 755–759.

132. Hashem, S.Y.; Zin, N.A.; Yatim, N.F.; Ibrahim, N.M. Improving mouse controlling and movement
for people with parkinson’s disease and involuntary tremor using adaptive path smoothing
technique via b-spline. Assist. Technol. 2014, 26, 96–104.

Retrieved from https://www.encyclopedia.pub/entry/history/show/89518


