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Parkinsonian tremors are sometimes confused with essential tremors or other conditions. Researchers conducted several

studies on tremor evaluation using wearable sensors and devices, which may support an accurate diagnosis. Mechanical

devices are also commonly used to treat tremors and have been actively researched and developed. Mechanical devices

for tremor suppression include deep brain stimulation (DBS), electrical muscle stimulation, and orthosis. Adaptive DBS

and optimization of stimulation parameters have been studied to improve treatment efficacy further. Due to developments

using state-of-the-art techniques, effectiveness in diagnosing, evaluating, and suppressing tremors using these devices is

satisfactorily high in many studies.

Keywords: Parkinson’s disease ; essential tremor ; diagnosis

1. Introduction

Parkinson’s disease (PD) is a progressive degenerative disorder primarily characterized by the degeneration of dopamine

neurons in the substantia nigra . Its main symptoms include tremor, rigidity, bradykinesia, akinesia, and postural

instability . Tremors are one of the most common motor symptoms of PD. PD can be classified into different subtypes as

follows: patients with predominant akinesia/rigidity, which is an akinetic-rigid type (ART), and those with a tremor-dominant

type (TDT) . PD-ART displays greater cognitive impairment and faster progression than TDT-PD . This warrants

understanding the status of tremors, considering their role in diagnosing the disease and its symptoms. Non-pathological,

slight physiological tremors can be found in normal individuals. Pathological tremor affects more than 0.4% of the

population , and its incidence and prevalence increase substantially with age .

Tremor is caused by a variety of conditions , and its exact underlying mechanism is not understood . Among several

causes of tremor, the most common and incidental types of tremor are seen in patients with PD and essential tremor (ET)

. ET is a major differential diagnosis. According to the 2018 Movement Disorders Consensus Criteria, ET is

characterized by isolated bilateral upper limb movement tremor with a duration of at least 3 years without other neurologic

signs . Tremor in patients with ET and PD is sometimes confusing. PD is a complex neurodegenerative disorder, usually

characterized by asymmetrical onset bradykinesia, muscular rigidity, postural instability, and tremor. Patients with PD

present with resting tremor, as well as other symptoms, except during the early stages. Resting tremors are often

enhanced by walking and performing tasks, such as calculation. In contrast, tremor severity tends to increase during

kinetic tasks in patients with ET. Despite the lack of a test to confirm diagnosis, medical interviews, physical examinations,

and blood tests should exclude other common causes of action tremors, such as the side effects of certain medications or

hyperthyroidism.

Tremor assessment is based on physical examination by a neurologist. Current diagnostic methods and quantification are

based on the phenomenological demonstration of tremor, principally with the help of movement disorder scales, such as

the essential tremor rating assessment scale , Fahn–Tolosa–Marin scale , and Unified Parkinson’s Disease Rating

Scale (UPDRS) . The correct diagnosis of the different tremor types is essential for treatment, which may depend on

the specific etiology of each type. However, tremor misdiagnosis owing to confusion between PD and ET can occur in

20% to 30% of cases . Thus, technological solutions may improve the quality of diagnosis and quantify the disease

stage.

2. Tremor Diagnosis Using Devices

2.1. Distinguishing between Patients with PD and Healthy Individuals, Using Devices

With regard to tremor diagnosis, distinguishing between ET and PD is sometimes challenging. Therefore, researchers are

actively identifying ways to support differential diagnosis by device-based objective evaluation. The first step in diagnosis

is to distinguish a patient from a healthy individual. Giulia et al., used a wearable inertial sensor to discriminate between
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patients with PD and healthy participants . Thirty-six patients with PD and 29 healthy controls performed the following

seven motor tasks from the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating

Scale (MDS-UPDRS) III wearing inertial sensors: resting tremor, postural tremor, rapid alternating hand movement, foot

tapping, heel-to-toe tapping, timed up and go test (TUG), and a pull test. Of these endpoints, SVM was performed using

highly relevant items, namely, tremor, bradycardia, pull test, and TUG, and was able to distinguish between patients with

PD and healthy controls with a high accuracy of 97%. Channa et al., also developed the A-WEAR bracelet for diagnosis

using 3D acceleration and gyroscopes, which accurately identified PD with a 91.7% probability by K-nearest neighbors

. Such research has been applied to smartphones and smartwatches. Kostikis et al., developed a smartphone-based

tool to assess upper limb tremor in patients . Using machine learning, the system correctly classified 82% and 90% of

the patients and healthy participants, respectively, based on data from a smartphone’s accelerometer and gyroscope.

Prototypes have also been developed using smartwatches . This system was tested with artificial neural networks,

random forests, and SVM, and trained on a sample comprising 192, 75, and 51 patients with PD, other movement

disorders, and healthy participants, respectively. Artificial neural networks displayed the best results in distinguishing

healthy participants from others, including those with PD and other movement disorders, with precision and recall of 0.94

(SD 0.03) and 0.92 (SD 0.04), respectively. Moreover, SVM demonstrated the best performance in distinguishing patients

with PD from those with other motor disabilities, and healthy participants, with precision and recall of 0.81 (SD 0.01) and

0.89 (SD 0.04), respectively. Moreover, there are other validations of diagnostics using commercially available

smartwatches . A study which used the Apple Watch series 3 and 4, which are commonly distributed smartwatches,

first evaluated their accuracy by comparing it with the Nanometrics seismometer. Both series 3 and 4 were confirmed to

be accurate, with a maximum error of <0.01 Hz from the seismograph. The patient performed a test designed by a

disability specialist to obtain acceleration data while wearing the smartwatch. Machine learning was used to discriminate

between patients with PD, healthy participants, and those with motor impairments other than PD (ET, Parkinsonism, etc.).

The machine learning classifiers used were as follows: SVM, CatBoost, multilayer perceptron, and simple deep learning

architecture. SVM, CatBoost, and multilayer perceptron displayed a balanced accuracy of >80% and precision and recall

rates of >90% for patients with PD and healthy participants. In an advanced task that distinguishes PD and non-PD motor

impairment, the multilayer perceptron demonstrated a balanced accuracy, precision, and recall of 74.1%, 86.5%, and

90.5%, respectively. Thus, considerable identification accuracy can be achieved, even with consumer products. Another

study used inertial data from a commercially available smartwatch to investigate eating behavior and evaluate the

reduction in motor symptoms in PD . They evaluated plate-to-mouth (PtM) in seven healthy participants and 21 patients

with PD. PtM is a measure related to the average time for the hands to transfer food from the plate to the mouth when

eating. Those with PD had higher PtM values than healthy participants. Furthermore, a model using PtM was used to

classify patients and revealed precision, recall, and F1 (harmonic mean of fit and recall) of 0.882, 0.714, and 0.789,

respectively. However, some of the aforementioned methods are difficult to use because they require expertise in system

operation and maintenance. Junior et al., developed a device that can be combined with a regular pen as an approach for

easier and simpler diagnosis . It can distinguish patients with PD from healthy individuals through a simple

diadochokinetic paper test, which assists in diagnosing the early stages of PD. The device was equipped with an

accelerometer and gyroscope, and the acquired data were classified using linear discriminant analysis, logistic regression,

classification and regression trees, K-nearest neighbors, SVM, and naive Bayes. The results confirmed that the overall

accuracy was approximately 100% for multiple classifiers.

2.2. Distinguishing between PD and ET Using Devices

The classic method of differentiating PD tremor from ET involves iodine-123-labelled N-omega-(flu-oropropyl)-2beta-

carbomethoxy-3beta-(4-iodophenyl) tropane and iodine-123-labelled 2β-carbomethoxy-3β-(4-iodophenyl) tropane

dopamine transporter imaging with single-photon emission computed tomography using nuclear imaging techniques 

. However, its accuracy may be less than that of clinical diagnosis by movement disorder specialists . In addition,

nuclear imaging techniques are widely unavailable because they involve radiopharmaceuticals and are expensive and

time-consuming. This warrants considering the mechanism of relatively inexpensive and widely available wearable

devices to identify PD and ET. Despite an overlap between the frequency ranges exhibited by PD and ET tremors, the

accelerometer power spectrum analysis signals can effectively distinguish between PD and ET .

Thanawattano et al., proposed a novel method for extracting temporal features based on variations in the frequency of

tremors with state . They attached six-axis inertial sensors to the index fingers of the participants and requested them

to perform three tasks as follows: kinetic, postural, and resting. Each task took 10 s to complete. The elliptical regions of

two-dimensional representations of the resting task for those with PD and ET were significantly different (p < 0.05).

Locatelli et al., developed a small, low-cost, wearable device with an inertial sensor . The device was worn on the wrist,

and four standardized tasks were performed to acquire data and build a classification model, which achieved an average

accuracy of >90%. Researchers have also used the acceleration from a smartwatch to identify PD and ET . The use of
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the mean harmonic peak power obtained from the accelerometer could facilitate calculation of the optimal discrimination

threshold by a receiver operating characteristic (ROC) analysis (sensitivity 90.9%, 95% CI 58.7–99.8%; specificity 100%,

95% CI 76.8–100%; and Cohen’s kappa = 0.91, SE = 0.08). In addition, the accuracy of the smartwatch was evaluated

using an analog accelerometer and provided consistent estimates of the peak frequency and proportional harmonic

power. Studies have also been conducted using smartphones: Woods et al., performed a task while holding a smartphone

in the hand to obtain acceleration information . This application used discrete wavelet transforms and SVM to classify

the data and found an accuracy rate of over 96%. Barrantes et al., also used smartphones to identify PD and ET .

Patients with an undecided diagnosis were included in the evaluation and were re-evaluated after 1 year. For the

experiment, smartphones were placed on the dorsal side of the hand, and recordings were obtained for epochs of 30 s at

rest and 30 s during arm stretching. They calculated the ROC of the total spectral power to establish a threshold to

separate participants with and without tremors. The results demonstrated an accurate diagnosis of PD or ET in 27 of 32

patients (84.38% discrimination accuracy). Of the patients with undecided diagnoses, all PD cases (two) and two of four

ET cases were correctly classified. Duque et al., also performed machine learning classification using the linear

acceleration of tremor recorded by the smartphone’s built-in accelerometer, and showed performances ranging from

90.0% to 100.0% sensitivity, and 80% to 100% specificity . Thus, the smartphone, a familiar device, is expected to be

utilized. Moon et al., evaluated the performance of several machine-learning methods, including neural networks, SVM, K-

nearest neighbor methods, decision trees, random forests, and gradient boosting . They used six inertial sensors (on

the wrist, back of the foot, sternum, and hip) to analyze balance and gait characteristics to distinguish between PD and

ET. The F1 score (harmonic mean of fit and recall), which is the most commonly used performance metric in machine

learning, was 0.61, 0.59, 0.56, 0.55, 0.53, and 0.49 for neural networks, gradient boosting, random forest, SVM, decision

tree, and K-nearest neighbors, respectively. It was superior to conventional logistic regression, thus confirming the

usefulness of machine learning for diagnosis. Most studies were diagnostic, based on data obtained from inertial sensors,

although some studies were conducted using EMG. A study investigating the EEG characteristics of resting tremor in

patients with ET and PD confirmed that the parameter that best differentiated the two disorders was the pattern of muscle

activation . Vescio et al., developed a μEMG device worn on the wrist to record resting tremor . Comparison with

common EMG recordings confirmed a good correlation between tremor frequency (r = 0.93, p < 0.001) and phase

difference (r = 0.92, p < 0.001). Thus, wearable devices have been used to classify PD and ET with high accuracy. Further

validation may provide more efficient diagnostic and prognostic tools that can assist clinicians in decision-making

processes.

3. Tremor Evaluation Using Devices

3.1. Tremor Evaluation Using Wearable Sensors

Raethjen et al., and Zhang et al., used EEG and EMG data to characterize tremors in patients with PD . Currently,

surface electromyography (sEMG) is the standard technique used for the characterization and monitoring of tremors in

patients with PD . Researchers have assessed the severity of tremors to determine the diagnostic usefulness of sEMG.

They compared 30 patients with PD with a healthy age-matched control group by attaching bipolar sEMG to the biceps

brachii muscle and evaluated muscle activity. The recurrence and determinism rates were significantly higher in the PD

group than in the control group, and were correlated with the UPDRS scores . Inertial sensors have been increasingly

used in recent years . A study comparing the accuracy of inertial sensors and EMG motion tracking showed

that inertial sensors were more accurate . Data-processing approaches vary across studies. Rigas et al., successfully

estimated tremor severity based on acceleration acquired using accelerometers attached to body segments and features

extracted from a hidden Markov model . Using a gradient descent algorithm, Cai et al., isolated the acceleration caused

by pure translational motion. A multiple regression model of UPDRS was created from the features extracted from these

accelerations and angular velocities . The performance of this model was r  = 0.95 for resting tremor and r  = 0.93 for

postural tremor. Kim et al., developed SNUMAP, a wrist-mounted evaluation device with a three-axis accelerometer and

gyroscope . They trained recordings from 92 patients with PD using a convolutional neural network (CNN) to create an

estimated UPDRS model. The results displayed an average accuracy of 85%, with a linearly weighted kappa of 0.85.

CNNs could achieve higher accuracy than simple machine learning methods, such as SVM or regression. Such machine

learning-based methods have been a trend in recent years, and numerous studies have been conducted. Wu et al.,

extracted characteristic values from acceleration signals in the time, frequency, and spectral domains, and tested multiple

machine learning methods. The results showed that the neural network model was more accurate than the SVM, random

forest, and multivariate linear regression models . Another method using CNNs is to learn a convolved 2D image of the

frequency response of the tremor signal . The results showed an average accuracy of 91%, with a linearly weighted

kappa of 0.91. Moreover, researchers have proposed an approach to estimate UPDRS using fuzzy inference rather than

machine learning . The fuzzy theory postulates that the truth value is not binary, true, or false but rather deals with all
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intermediate values. Moreover, it considers uncertainty. This method is scalable and easily tunable because it is modeled

in a manner similar to the human inference process. Garza-Rodríguez et al., also used fuzzy inference to evaluate

UPDRS from hand pronation/supination exercises, and found that in most cases the results were consistent with expert

evaluation . While wearable sensors have the advantage of monitoring patients in several situations, devices that do

not require attachment to the patient are also useful while measuring behavioral tremors under specific conditions. This

led to the development of Rehapiano, an ergonomically designed tremor evaluation device with strain gauges placed on a

two-handed handle . The performance evaluation also confirmed that the sensitivity was sufficient to quantify the

tremor. The other product is the TREMITAS-System, a pen-type device with an accelerometer, 3D gyroscope, and 3D

magnetometer . This device was able to quantify tremors and was significantly correlated with UPDRS and the tremor

research group essential tremor assessment scale subscores.

3.2. Tremor Evaluation Using Smartphones and Smartwatches

Smartphones have become the most popular devices in recent years, and studies have been conducted on the evaluation

of tremors using these devices. This is partly attributable to the rapid increase in their computing power. Lemoyne et al.,

used a common smartphone to evaluate tremor frequency in patients with PD . Araujo et al., demonstrated good

consistency between a clinically obtained EMG, and accelerometer data obtained using smartphone applications

(Pearson > 0.8, p < 0.001) . Bermeo et al., developed an Android application that could assess the status of patients

with PD based on three tests in the MDS-UPDRS . Kostikis et al., used a smartphone’s gyroscope and accelerometer

to detect and quantify tremors. The smartphone detected data on hand tremors, and the UPDRS hand tremor scores

revealed a good correlation (r > 0.7 and p < 0.01) . These studies have often been conducted in controlled

environments, such as laboratories; however, some studies were performed in free-living environments. Researchers

have proposed an algorithm for tremor classification using a multiple-instance learning method based on smartphone

acceleration to cope with noisy data, which demonstrated good classification performance . van Brummelen et al.,

compared laboratory-grade and consumer product accelerometers and suggested that the amplitude at peak frequency

varied among the sensors, indicating that distal worn sensors tended to measure higher amplitudes relative to proximal

ones. Thus, the placement of sensors may be an important part of evaluating tremor amplitude . Thus, tremors can be

detected and evaluated with high precision without using dedicated sensors, besides having considerably lower hurdles

for their use.

In addition to smartphones, several smartwatches have become popular in recent years, with the availability of numerous

models. Smartwatches may be suitable for tremor assessment because they are worn on the wrists. Several studies

evaluated tremors using sensors attached to the wrist. López-Blanco et al., quantified resting tremors by obtaining the

parameters of tremor intensity from the root mean square of angular velocity acquired from a smartwatch .

Furthermore, they simultaneously performed a statistical analysis of the quantified data with the UPDRS-III score, which

revealed a strong correlation with a Spearman’s correlation coefficient (ρ) of 0.81 (p < 0.001). In addition, satisfaction

associated with the device was high. Tremors can also be classified using machine learning based on triaxial acceleration

data from commercially available smartwatches . Investigators have achieved high tremor detection performance using

a multitasking CNN that uses both raw signals and spectral data representations as inputs. They are exploring data

measurement characteristics necessary for the accurate detection of PD symptoms . Following a comparative

evaluation of commercially available smartwatches and measurement sensors with multiple functions, accelerometer data

from the smartwatch alone were sufficient to detect tremors. A sampling rate ≥ 30 Hz was required to detect tremors using

acceleration. In addition, they investigated the impact of the features used in machine learning (time, frequency, entropy,

correlation, and derivative) on accuracy. Entropy was identified to be important for tremor detection. Entropy is

computationally expensive and affects real-time performance and battery consumption. Taken together, tremor detection

using smartwatches has reached a practical level and is expected to be utilized. The use of affordable wearable

technology is less burdensome and the most useful approach for routine care and assessment of patients with PD.

4. Tremor Monitoring

Despite the variety of novel devices being designed to assess tremors at specific times, several studies have aimed at

continuous monitoring. Assessments in clinics and other settings are time-limited and may not reflect routine symptoms.

This warrants an evaluation with prolonged monitoring to accurately assess disease status. Such monitoring is also

expected to be used as screening for the application of advanced treatments, such as DBS . In the early studies, there

was a type of study in which tests were taken several times a day ; however, in recent years, a continuous monitoring

system has also been realized. Pulliam et al., attached motion sensors to the limbs and obtained data for six daily

activities, such as eating and brushing teeth . Assessments of 13 patients with PD revealed that the ratings by ROC

curves were consistent with the clinician’s UPDRS-III ratings of the video recordings (ROC area > 0.8). Similarly, Hssayeni
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et al., measured tremor severity from activities of daily living with wrist- and ankle-mounted three-axis gyroscopic sensors;

results from 24 patients with PD displayed the maximum correlation of 0.96 in gradient tree boosting . Researchers

have proposed wearable sensors attached to the wrist and chest combined with questionnaire-based assessment for

continuous monitoring of PD symptoms in daily life . Overlapping frequency components make it difficult to distinguish

between daily activities and tremors; nonetheless, a method has been proposed for detecting tremors using a two-step

algorithm . Another device that can detect PD hand tremors from daily movements is the PD-Watch . This device

enables detection by checking for movement frequency and supination–pronation characteristics. The index calculated

from 24 h of data obtained from this device was shown to correlate with the UPDRS score. Furthermore, a system was

proposed as a machine learning approach to detect tremors in daily life data using a CNN and other techniques from a

wearable accelerometer system worn on the wrist . This technology enabled the quantification of the number of tremors

in daily life. For a more user-friendly and complete sensor, researchers developed the biosensor patch NIMBLE (MC10,

Inc., Lexington, MA, USA) with an accelerometer and myoelectric system . It can adhere to the skin using adhesive

stickers. In addition, the measurements can be wirelessly transmitted to a smartphone or tablet and a cloud server.

Prediction scores using acquired data were within the range of ±1, with a probability of 91%. Moreover, their adhesion and

safety were evaluated. Such techniques may allow for better treatment by assessing tremors at higher frequencies in daily

activities.

5. Treatments for Tremor

5.1. DBS

DBS has been established as the standard of care for patients with movement disorders, such as PD, ET, and dystonia.

DBS is an effective and widely used treatment for these patients, and the majority of them achieve good clinical results

following surgery . DBS improves bradykinesia , gait freezing in PD , camptocormia , and tremor

. Moreover, it is a safer treatment with lower complication rates than stereotactic thalamotomy . The subthalamic

nucleus (STN) and internal globus pallidus (GPi) are the most common targets for PD stimulation . A meta-analysis

evaluating the effect of DBS on tremor suppression compared DBS ON and OFF conditions and found a significant

standardized difference mean effect (effect size = 0.36; 95% CI = 0.316–0.395; p < 0.0001) . The sum of UPDRS III,

items 20 and 21, was used for this measure. These results indicate moderate effectiveness. Z-test results showed no

significant difference in effect size between STN and GPi (p = 0.56). A 12-month follow-up study also confirmed its

effectiveness in reducing action/postural tremor and resting tremor . The method of electrode placement is also

important. Diffusion tensor imaging and tractography guided lead placement have been shown to provide more stable

placement and better tremor control compared to conventional methods of lead placement . Other targets include the

ventral intermediate nucleus of the thalamus (VIM), caudal zona incerta, and posterior subthalamic area, which have a

striking effect in improving tremors . Therefore, if tremor is the main problem, rather than bradykinesia for

patients with PD, these targets are warranted to be considered as first choice. A study of 98 patients with PD and ET

showed sustained improvement in tremor scores (UPDRS III, items 20 and 21; Fahn–Tolosa–Marin Tremor Rating Scale)

with VIM stimulation (mean improvement, 70% and 66% at 1 year and 63% and 48% at >10 years, respectively, p < 0.05)

. There was no significant loss of a stimulation effect over time (p > 0.05). Thus, the effects of DBS are long-lasting.

Tremor can be controlled by maintaining the activities of daily living, and there was high patient satisfaction during the 10-

year follow-up . However, DBS is not effective in all patients, and patients need to determine whether they are

appropriate candidates.

aDBS

Advances in DBS technology are ongoing, and novel research and development are underway. aDBS is one of the most

innovative techniques. An aDBS device operates on the principle of closed-loop interaction, which can determine the

effect of stimulation and adjust it, in response to the observed effect. LFPs are used as biomarkers to achieve a closed

loop in aDBS. aDBS with LFPs has the advantage of being achieved by the online analysis of deep brain recordings,

without the need for additional measurement channels. It is effective and is currently being used to treat patients with PD

.

With regard to tremor suppression, an aDBS device has not been used clinically. Performing DBS only after the

appearance of symptoms may reduce battery consumption. Power consumption is important because battery replacement

requires surgery. aDBS necessitates the detection of tremors from the LFP. Reliable symptom detection is important for

the implementation of aDBS. Tremor-related activity occurs throughout the motor network . Specifically, it includes

the basal ganglia, thalamus, cerebellum, and primary motor cortex, which coherently respond at tremor frequencies of 3–7

Hz upon their presentation . Other findings include an increase in low gamma power (31–45 Hz)  and changes
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in high-frequency fluctuations in the subthalamic nucleus . Advanced techniques, such as machine learning, are

required to capture the aforementioned complex features. Hirschmann et al., used a hidden Markov model to classify

tremors . They obtained the LFP from the STN of 10 patients with PD, which was evaluated using four frequency

domains (power at the individual tremor frequency ± 1 Hz, beta power, low gamma power, and high-frequency oscillations

power ratio). The results indicated a mean area under the ROC curve of 0.82 and a SD of 0.15. Furthermore, it displayed

good accuracy, even without training, for individual patients. High-frequency domain is the most useful feature for

detecting tremors. Camara et al., developed a system that simultaneously recorded LFP in the subthalamic nucleus and

electromyographic activity in the forearm and used fuzzy inference to detect tremors based on the relationship between

the signals . The system displayed 100% accuracy in detecting tremors in four of 10 patients with PD and attained

>98.7% accuracy in seven patients.

The Optimization of Stimulation Parameters

The optimization of stimulation parameters is important for the efficient use of DBS. Setting general DBS parameters often

relies on subjective evaluation, which may not yield optimal effects. In addition, multiple parameters, such as frequency,

pulse width, and amplitude, must be set appropriately within the time constraints. Thus, researchers proposed next-

generation methods to quantify tremors using wearable sensors as objective indicators for determining stimulation

parameters. Pulliam et al., proposed an algorithm in which motion sensors, including accelerometers and gyroscopes,

were attached to the fingers to acquire motion data, which were subsequently used to set the DBS parameters . There

were two algorithms, as follows: one to maximize the treatment effect and the other to optimize the battery life. The

algorithm that maximized the treatment effect reduced motor symptoms by 13%; however, it increased the stimulus

amplitude, compared with the usual setting method. In contrast, the algorithm that optimized battery life successfully

reduced the stimulus amplitude by an average of 50% while maintaining the level of therapeutic effect. Currently, the

intraoperative parameter setting is subjectively performed. A system was developed to assist in electrode placement and

test stimulus settings during DBS implantation surgery for awake patients. The system facilitated the quantitative real-time

visualization of neural activity recorded by microelectrode and motor symptoms, such as tremors, recorded by an inertial

measurement unit during surgery . Dai et al., also developed a glove-type system that uses an inertial measurement

unit and force sensitive resistor to measure the immediate effects of DBS by tremors, bradykinesia, and rigidity

assessments . In addition, highly functional inertial sensors with conformal, wireless, and data upload functions, and

the Food and Drug Administration (FDA)-approved BioStamp nPoint, have been developed . These technologies will

realize next-generation methods of optimizing stimulation parameters in clinical settings.

5.2. EMS

EMS Controlled by Motion Detectors

EMS, used to alleviate resting tremor, is based on modifications by changes in peripheral mechanical conditions, external

joint motion, or EMG . Jitkritsadakul et al., developed a glove-shaped portable device that detected and suppressed

tremors . It consisted of three components, as follows: a glove with an embedded inertial sensor and an EMS module,

a control box that can be worn on the waist belt, and an Android smartphone. An inertial sensor attached to the glove was

used to detect and stimulate tremors. EMS was performed via two electrodes placed over the short thumb abductor

muscle and the first and second dorsal skeletal muscles. They evaluated the performance of this device using a double-

blind, 1:1 pair-designed, randomized, placebo-controlled design in 30 patients with PD. The tremor glove effectively

suppressed intractable resting hand tremors in these patients, without serious adverse events. Specifically, they identified

a significant reduction in the root mean squared angular velocity (as a percentage) in every axis, in peak magnitude in the

axis (x-, y-), and in UPDRS tremor scores (glove: 5.27 ± 2.19, sham: 4.93 ± 2.37) during stimulation with Tremor’s glove,

compared with the sham groups (p < 0.05, each). Gallego et al., developed a device that integrated neurostimulation

electrodes, gyroscopes, and control electronics . It analyzed the characteristics of the tremor (instantaneous amplitude

and frequency) from the gyroscope recordings and regulated the level of muscle co-contraction by injecting current into

the antagonist pair, as appropriate. They obtained significant attenuation of the tremor (p < 0.001) in patients with PD and

ET, reducing its amplitude to 52.33 ± 25.48%.

EMS Controlled by EMG Signals

Researchers have proposed a method for detecting tremors from the EMG signals of muscles. Dosen et al., proposed a

method of detecting tremors from the EMG of the muscles causing the tremor and counteracting it by applying an out-of-

phase electrical stimulation to a similar muscle . The device was evaluated in four and two patients with PD and ET,

respectively, and demonstrated an average tremor reduction of 46% to 81% and 35% to 48% in the five patients,

respectively. In one patient, the system did not attenuate the tremor. Myoelectric sensors implanted in muscles have been
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developed to improve diagnostic accuracy . The sensor can acquire EMG signals near muscle fibers, and the

implantable system ensures a stable relationship between the source and electrodes. It has the advantage of being

unaffected by external factors, such as sweat. Intramuscular electrodes can be placed using a hypodermic needle. These

electrodes usually have only the function of a single recording; however, in recent years, investigators have developed

multichannel electrodes made of thin polyimide films . In addition, a device that not only records, but also

simultaneously stimulates, has been developed . It was built on a polyimide substrate and comprises 12 recording

sites and three stimulation sites made of platinum. This device was tested on six patients with ET and three healthy

participants to assess basic information, such as perceptual thresholds and current limits. Furthermore, the application of

this electrode to the system created by Dosen et al.,  suppressed tremors and wrist angles by an average of 58%.

5.3. Other Devices

Tremor Suppression Using Orthosis

Several studies have used suppressive orthoses for tremor suppression  Herrnstadt and Menon developed a one-

degree-of-freedom elbow brace that can be worn by people with tremors . This system consisted of a suppression

motor, gears, sensors, including force transducers and encoders, and braces on the upper arm and forearm. They

evaluated the brace in nine patients diagnosed with mild to severe tremors, including PD, and observed a 94.4% (p <

0.001) reduction in the mean power of the tremor . This type of tremor-suppression device requires a power supply

and is termed an active device. In contrast, researchers have developed passive devices that operate by damping or

absorbing vibration energy . Buki et al., developed a passive device based on energy absorption, termed a Vib

bracelet . This device absorbs vibrations in the frequency range associated with tremors using the principle of a

dynamic vibration absorber. This technology is widely used to absorb vibrations caused by earthquakes in bridges and

high-rise buildings. It has a simple structure, weighs 280 g, and has a small and lightweight outer radius of 57 mm. The

evaluation of the mechanical forearm enabled attenuation of the vibration in the range of 4 Hz to 5.75 Hz, with an

amplitude attenuation of 86% (approximately one in 7.3) at 4.75 Hz. Further performance improvement can be achieved

by personalizing the device according to the frequency of the tremor. Faizan et al., developed a passive bracelet-type

device  that comprised a dual-parallel configuration passive vibration absorber. Their theoretical evaluation revealed

that the device reduced the amplitude of angular motion of the wrist by 57.25%. Furthermore, an evaluation of patients

with PD confirmed that rectangular sketching partially improved the tremors while using the device. While most of these

studies have targeted wrist tremor, a glove-type device that independently controls tremor in each finger joint has also

been proposed . This device is designed to manage tremor in the index metacarpophalangeal joint, thumb

metacarpophalangeal joint, and the wrist. Results show overall suppression of 73.1%, 80.7%, and 85.5% in resting

tremor, 70.2%, 79.5%, and 81% in postural tremor, and 60.0%, 58.7%, and 65.0% in kinetic tremor in the index finger

metacarpophalangeal joint, the thumb metacarpophalangeal joint, and the wrist, respectively. In addition, Wanasinghe et

al., developed a lighter and less bulky glove-type device based on layer jamming . When a vacuum is supplied to the

layer jamming elements, which contain a stack of attached layers, this device increases the stiffness of the glove and

suppresses hand tremor. An assessment of 11 tremor patients revealed mean frequency power reductions of 41.74,

41.99, and 24.7% for the index and middle fingers and in grasping, respectively, with a maximum power reduction of

59.15%. The above-mentioned studies are examples of reports on the impacts of engineering solutions.

Tools with Tremor Control Function

Additional approaches include research that incorporates a mechanism to suppress unintended movements in tools rather

than the tremor itself. For example, researchers developed a tray to transport objects, which included a vibration

stabilization function . This tray includes a mechanical platform and an electronic system to suppress the vibration of

the base plate. It is stabilized by controlling three servomotors in a direction that counteracts the changes based on the

data acquired by the inertial sensors. Some tableware contains a tremor control function. The Liftware Steady  (Liftware,

Inc., San Francisco, CA, USA) comprises an electronically controlled stabilizing handle and numerous attachments,

including a spoon, fork, and spork, to facilitate eating for patients with tremors. A pilot study demonstrated an improvement

in tremor with the Liftwear Steady  using the Fahn–Tolosa–Marin Tremor Rating Scale . In addition, investigators

have attempted to use such spoons for tremor assessment . The tremors were assessed using a linear model trained

from motion signals that recorded the tremors. A modified Fahn–Tolosa–Marin scale was used for the assessment, and

the correlation coefficient between the expert rating and the model score was 0.91 (p < 0.001). It demonstrated practical

accuracy and can be used for daily objective monitoring. In addition, technologies have been proposed to assist in

computer mouse control . This method uses adaptive path smoothing via the B-spline to provide a smooth mouse

path.
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6. Conclusions

Due to developments using state-of-the-art techniques, effectiveness in diagnosing and evaluating tremor and

suppressing it using these devices is satisfactorily high in many studies. However, other than DBS, no devices are in

practical use. To acquire high-level evidence, large-scale studies and randomized controlled trials are needed for these

devices.
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