

Self-Healing Elastomers

Subjects: **Materials Science, Composites | Polymer Science**

Contributor: Marianella Hernández Santana , Miguel Angel Lopez-Manchado , Saul Utrera-Barrios , Raquel Verdejo

It is impossible to describe the recent progress of our society without considering the role of polymers; however, for a broad audience, “polymer” is usually related to environmental pollution. The poor disposal and management of polymeric waste has led to an important environmental crisis, and, within polymers, plastics have attracted bad press despite being easily reprocessable. Nonetheless, there is a group of polymeric materials that is particularly more complex to reprocess, rubbers. These macromolecules are formed by irreversible crosslinked networks that give them their characteristic elastic behavior, but at the same time avoid their reprocessing. Conferring them a self-healing capacity stands out as a decisive approach for overcoming this limitation. By this mean, rubbers would be able to repair or restore their damage automatically, autonomously, or by applying an external stimulus, increasing their lifetime, and making them compatible with the circular economy model.

self-healing materials

self-healing rubbers

natural rubber

synthetic rubber

dynamic networks

supramolecular chemistry

1. Introduction

In the actual environmental context, polymers like rubbers are particularly critical due to their reprocessing difficulties. These macromolecular materials are composed of irreversible crosslinked networks that act as “*anchor points*”, preventing the flow of polymeric chains. Consequently, the material cannot be reshaped [1], and a considerable amount of rubber waste could be generated. One of the strategies to solve this issue has been the recovery of end-of-life rubbers for their use as a diluent or reinforcing filler in new composite materials [2][3][4][5][6]. Also, the selective breaking of the crosslinking points, known as devulcanization [7][8][9][10][11], has been extensively studied; however, both strategies are considered insufficient. Thus, the redesign of crosslinked rubbers is mandatory. Most recent redesign strategies point toward building dynamic networks [1][12][13].

The creation of crosslinked polymers with dynamic networks has spawned a new generation of polymers known as DYNAMERS (*DYNAmic polyMERS*) [14][15]. The construction of these networks is based on multiple dynamic bonds and/or supramolecular interactions, like hydrogen bonds [16][17], ionic interactions [18], metal–ligand coordination [19], disulfide exchange [20], and Diels–Alder chemistry [21][22], among other covalent, non-covalent mechanisms and/or combinations between them [23][24][25][26][27][28][29][30]. The reversible nature of these networks can be controlled by an external stimulus, which can be temperature, pressure, electrical current, magnetic field, or further changes in the medium, such as pH [31][32][33][34][35]. In this way, the stimuli-responsive material would be able to release its

“anchor points”, allowing the flow of its chains until it reforms and/or repairs. In fact, the use of dynamic networks is the most widespread self-healing strategy used in rubbers [1].

2. To Boldly Go Where No Material Has Gone before: Self-Healing Concepts

Self-healing is the ability to repair or restore damages [36][37][38][39]. To scientifically understand healing as a physical process, four key concepts must be considered in rubbers: (1) Mechanism, (2) Mobility, (3) Localization and (4) Temporality [40]. In elastomers, the success of the self-healing process goes hand in hand with the adequate selection of a mechanism that guarantees the necessary molecular mobility of the polymeric chains, as well as enough time for the restoration of the damage according to its location (on a macroscopic or microscopic scale) [41].

The first concept is the *mechanism*. Self-healing can occur extrinsically or intrinsically [42][43]. Extrinsic mechanisms are based on an external healing agent that is incorporated into the matrix in an encapsulated form, in vascular networks or freely dispersed. When damage occurs, these agents are released and/or flow through the damage area, sealing it. Despite being the first mechanisms used, according to the historical development, their use in rubbers is very limited due to the difficulties of preserving the stability of the agent during the conventional mixing process of rubber recipes (enormous shear forces) [40].

The intrinsic mechanisms are based on the creation of crosslinking points using dynamic covalent bonds or supramolecular interactions. On one hand, dynamic covalent bonds activate this character under different external stimuli and can occur through an associative or dissociative pathway. The associative pathway is characterized by a constant crosslink density during the exchange. Meanwhile, the dissociative one is characterized by a change in the crosslink density over time, due to an independent reformation and formation of the bonds [15][44]. On the other hand, supramolecular interactions are non-covalent in nature and have also been shown to be successful strategies to achieve repairability [15][45][46].

From a general point of view, intrinsic mechanisms can be classified as [42]:

1. Non-covalent intrinsic mechanisms, such as hydrogen bonds, ionic interactions, metal–ligand coordination, among others; and,
2. Covalent intrinsic mechanisms, such as disulfide bond exchange (associative), Diels–Alder chemistry (dissociative), transesterification reactions (associative), bonds based on boron and imines chemistry (dissociative), among others.

In recent years, the creation of hybrid networks by multiple combinations of covalent and non-covalent mechanisms has become remarkably widespread [1][40].

The second concept is *mobility*. It is a priority concept for self-healing, regardless of the mechanism. In the case of the intrinsic ones, the mobility of the chains will be mandatory to guarantee the success of the exchange reactions. If the rubber network is very impeded, more severe conditions are required (e.g., high temperatures) that could seriously compromise the stability of the material [40].

The third concept is *localization*. It is related to the scale of the damage. According to the literature, repair on a microscopic scale is easier than on a macroscopic one. This is completely expected from the physical point of view. In addition, this localization will also have a considerable influence on the repair conditions. At larger scales, the required repair conditions will be more severe [40][41].

The last concept is *temporality*. Ideally, self-healing would be an automatic process, but in practice, it is time-dependent. This dependence is also strongly related to the external stimulus used. One of the greatest complexities of self-healing as a scientific strategy stems from the consideration of all these variables and conditions that must be exhaustively optimized to guarantee a compromise between self-healing capacity, mechanical performance, and material integrity [40].

3. Current Developments in Self-Healing Elastomers

3.1. Self-Healing Natural Rubber

Natural rubber (NR) consists of *cis*-1,4-polyisoprene chains [47]. It is the only natural macromolecule completely constituted by carbon (C) and hydrogen (H) atoms, obtained from multiple varieties of plants and fungi, where the most commercially representative is the *Hevea Brasiliensis* tree [48]. NR is characterized by having high elasticity, even in the unvulcanized state, due to a naturally occurring network of the non-rubber components, which is responsible for its green strength and facilitates the strain-induced crystallization behavior characteristic of this material [49][50][51][52][53][54].

NR has its origin in South America, but currently, the largest production is concentrated in Southeast Asia, with Thailand and Indonesia concentrating more than 50% of the world's production. Among its most common applications is the manufacture of large tires, especially for aircraft, vehicles, and heavy machinery, as well as bridge mounts, anti-vibration devices, conveyor belts, and other high-performance elastomeric parts [47].

Due to the demands of its processing, NR is not among the most studied rubbers for self-healing; however, Spanish scientists were pioneers in the study of this material, taking advantage of the existence of sulfur crosslinked points that can serve as healing moieties. **Table 1** shows the studies available in the literature.

Table 1. Self-healing natural rubber research conducted in Spain (2012–2022).

Matrix	Mechanism	Healing Moieties	Filler	Reference
NR	Covalent intrinsic	Diels–Alder chemistry	Unfilled	[55]
ENR	Non-covalent intrinsic	Hydrogen bonds	Unfilled	[56]
NR	Covalent intrinsic	Disulfide exchange	Graphene oxide	[57]
ENR	Combined intrinsic	Hydrogen bonds + Transesterification reactions	Graphene oxide	[58]

3.2. Self-Healing Synthetic Elastomers

Most commercially relevant elastomers are of synthetic origin, representing over 55% of world production [58]. From a basic point of view, synthetic rubbers and elastomers have been created to replace NR in those scenarios where it does not perform well at high and low temperatures, in contact with petroleum-derived solvents, as well as to avoid gas permeability. Styrene butadiene rubber (SBR), carboxylated Nitrile Rubber (XNBR), silicone elastomers and polyurethane elastomers are some examples. Table 2 shows the studies available in the literature on self-healing materials (identified as elastomers or rubbers by their authors).

1. Alan M. Wemyss; Chris Bowen; Cédric Plesse; Gédris Vancaeyzeele; Giao T.M. Nguyen; Frédéric Vidal; Chaoying Wan; Dynamic crosslinked rubbers for a green future: A material perspective. *Materials Science and Engineering: R: Reports* **2020**, *141*, 100561. 10.1016/j.mser.2020.100561.

2. Yuxin Zhang, Zhen Zhang, Alan Matheson Wemyss, Chaoying Wan, Yongtao Liu; Pan Song; Shifeng Wang; Effective Thermal-Oxidative Reclamation of Waste Tire Rubbers for Producing High-Performance Rubber Composites. *ACS Sustainable Chemistry & Engineering* **2020**, *8*, 6070–6077. 10.1021/acssuschemeng.0c00020.

Matrix	Mechanism	Healing Moieties	Filler	Reference
SBR	Covalent intrinsic	Disulfide exchange	Unfilled	[41][59]
XNBR	Non-covalent intrinsic	Ionic interactions	Unfilled	[60]
PUU	Covalent intrinsic	Disulfide exchange	Unfilled	[61][62]
Polyamide ionene	Combined intrinsic	Ionic interactions + Hydrogen bonds + π - π stacking	Unfilled	[63]

Waste-Based Polymer Materials: A Review. *Polymers* **2022**, *14*, 1050, 10.3390/polym14051050.

Matrix	Mechanism	Healing Moieties	Filler	Reference
Ionic elastomer	Non-covalent intrinsic	Ionic interactions	Unfilled	[64] Seghar; et resin.
SBR	Covalent intrinsic	Disulfide exchange	GTR ¹	[59][65]
SBR	Covalent intrinsic	Disulfide exchange	dGTR ²	[66] n of 10.101
XNBR	Non-covalent intrinsic	Ionic interactions	GTR	[60] anical cycling
Silicone elastomer	Covalent intrinsic	Thiol exchange	Ag nanoparticles	[67] ent of 109450, 10.1016/j.polymdegradstab.2020.109450.

12. Alan M. Wemyss; Christopher Ellingford; Yoshihiro Morishita; Christopher Bowen; Chaoying Wan; Ground tire rubber (GTR) from end-of-life tires. Devulcanized ground tire rubber (dGTR) from end-of-life tires; Dynamic Polymer Networks: A New Avenue towards Sustainable and Advanced Soft Machines. *Angewandte Chemie International Edition* **2021**, *60*, 13725-13736, 10.1002/anie.202013254.

4. Challenges, Perspectives, and Outlook

13. Nikola Bosnjak; Meredith N. Silberstein; Pathways to tough yet soft materials. *Science* **2021**, *374*, Until 150 of 151, 10.1126/science.abi358. Different matrices (natural and synthetic) with potential industrial applications have been studied. However, there is still much work to be done. Although it is true that efforts point towards the scalability of self-healing concepts in commercial applications, a comprehensive understanding of the underlying self-healing mechanisms, as well as the optimization of its conditions, is still pending. The redesign of elastomeric compounds

14. Nabarun Roy; Bernd Bruchmann; Jean-Marie Lehn; DYNAMERS: dynamic polymers as self-healing materials. *Chemical Society Reviews* **2015**, *44*, 3786-3807, 10.1039/c5cs00194c. mechanisms, as well as the optimization of its conditions, is still pending. The redesign of elastomeric compounds

15. Binu Zhang; Nethaji Desai; Alvaro Vazquez; Shivankar V. Waghorne; Saadyah Averick; Dominik Konkolewicz; Complementary Dynamic Chemistries for Multifunctional Polymeric

1. Materials. *Advanced Functional Materials* **2021**, *32*, 2108491, 10.1002/adfm.202108491. excellent mechanical performance,

16. Zhulu Xie; Ben-Lin Hu; Run-Wei Li; Qichun Zhang; Hydrogen Bonding in Self-Healing Elastomers. *ACS Omega* **2021**, *6*, 9319-9333, 10.1021/acsomega.1c00462.

2. The minimization of components that can hinder the mobility necessary to achieve healing (e.g., secondary irreversible networks) and,

17. Qiaopan Huang; Yongqian Sun; Jindong Ma; Yanyang Zhu; Tongfan Hao; Shuping Zhou; Yujing Nie; Blending polar rubber with polyisobutylene to create a self-healing rubber with multiple hydrogen-bonding networks. *Polymer* **2022**, *246*, 124768, 10.1016/j.polymer.2022.124768.

18. Jinhui Liu; Chunlin Xiao; Jian Tang; Yudong Liu; Jing Hua; Construction of a Dual Ionic Network in Natural Rubber with High Self-Healing Efficiency through Anionic Mechanism. *Industrial & Engineering Chemistry Research* **2020**, *59*, 12755-12765, 10.1021/acs.iecr.0c01538.

19. Mithun Das; Kinsuk Naskar; Development, characterization and applications of a unique self-healable elastomer: Exploring a facile metal-ligand interaction. *Polymer* **2021**, *237*, 124373, 10.1016/j.polymer.2021.124373.

Dinamic but stable network at service conditions

No repairability

Fully material integrity at healing protocol conditions

20. Jiarong Huang; Zhou Gong; Yukun Chen; A stretchable elastomer with recyclability and shape memory assisted self-healing capabilities based on dynamic disulfide bonds. *Polymer* **2022**, *242*, 124569, 10.1016/j.polymer.2022.124569.

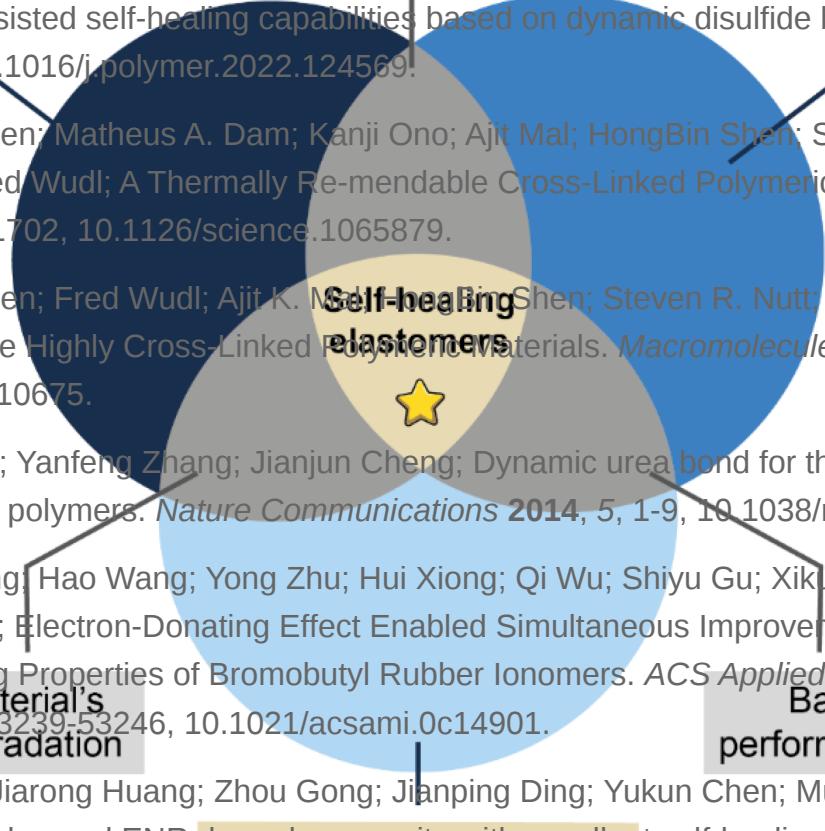
21. Xiangxu Chen; Matheus A. Dam; Kanji Ono; Ajit Mal; HongBin Shen; Steven R. Nutt; Kevin Sheran; Fred Wudl; A Thermally Re-mendable Cross-Linked Polymeric Material. *Science* **2002**, *295*, 1698-1702, 10.1126/science.1065879.

22. Xiangxu Chen; Fred Wudl; Ajit K. Mal; HongBin Shen; Steven R. Nutt; New Thermally Remendable Highly Cross-Linked Polymeric Materials. *Macromolecules* **2003**, *36*, 1802-1807, 10.1021/ma0210675.

Self-healing elastomers

Material's degradation

No mobility restrictions (minimize non-dynamic components)


Bad performance

23. Hanze Ying; Yanfeng Zhang; Jianjun Cheng; Dynamic urea bond for the design of reversible and self-healing polymers. *Nature Communications* **2014**, *5*, 1-9, 10.1038/ncomms4218.

24. Linjun Zhang; Hao Wang; Yong Zhu; Hui Xiong; Qi Wu; Shiyu Gu; Xikui Liu; Guangsu Huang; Jinrong Wu; Electron-Donating Effect Enabled Simultaneous Improvement on the Mechanical and Self-Healing Properties of Bromobutyl Rubber Ionomers. *ACS Applied Materials & Interfaces* **2020**, *12*, 53239-53246, 10.1021/acsami.0c14901.

25. Tao Peng; Jiarong Huang; Zhou Gong; Jianping Ding; Yukun Chen; Multiple cross-linked networks enhanced ENR-based composite with excellent self-healing properties. *Polymers for Advanced Technologies* **2021**, *32*, 2856-2865, 10.1002/pat.5295.

26. Chun-Ming Yeh; Chun-Hsiu Lin; Tzong-You Han; Yu-Ting Xiao; Yi-An Chen; Ho-Hsiu Chou; Disulfide bond and Diels–Alder reaction bond hybrid polymers with high stretchability, transparency, recyclability, and intrinsic dual healability for skin-like tactile sensing. *Journal of Materials Chemistry A* **2020**, *8*, 6109-6116, 10.1039/DT00185J

Diagram illustrating optimal healing conditions:

27. Siyang Wang; Marek W. Urban; Self-Healable Fluorinated Copolymers Governed by Dipolar Interactions. *Advanced Science* **2021**, *8*, 2101399, 10.1002/advs.202101399.

28. Xiaoyu Gao; Wenru Fan; Wei Zhu; Gao Jiuwei; Pengfang Zhang; Chen Wang; Xuwen Wang; Hesheng Xia; Zhenhua Wang; Wei Huang; et al. Tough and Healable Elastomers via Dynamic Integrated Moiety Comprising Covalent and Noncovalent Interactions. *Chemistry of Materials* **2022**, *34*, 2981-2988, 10.1021/acs.chemmater.1c03813.

29. D. Yilmaz; D. Lansade; S. Lewandowski; S. Perraud; A. Llevot; S. Carlotti; Combination of permanent hydrosilylation and reversible Diels–Alder reactions for self-healing poly(dimethylsiloxane) materials with enhanced ageing properties. *Materials Today Chemistry* **2022**, *24*, 100860, 10.1016/j.mtchem.2022.100860.

30. Tu Jing; Xu Heng; Xiang Guifeng; Liang Li; Pingyun Li; Xiaode Guo; Rapid self-healing and tough polyurethane based on the synergy of multi-level hydrogen and disulfide bonds for healing propellant microcracks. *Materials Chemistry Frontiers* **2022**, *6*, 1161-1171, 10.1039/d2qm00047d.

31. Chee Keong Tee; Chao Wang; Ranulfo Allen; Zhenan Bao; An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. *Nature Nanotechnology* **2012**, *7*, 825-832, 10.1038/nnano.2012.192.

32. Hong Hai Le; Frank Böhme; Aladin Sallat; Sven Wießner; Maria Auf Der Landwehr; Uta Reuter; Klaus-Werner Stöckelhuber; Gert Heinrich; Hans-Joachim Radusch; Amit Das; et al. Triggering the Self-Healing Properties of Modified Bromobutyl Rubber by Intrinsically Electrical Heating. *Macromolecular Materials and Engineering* **2016**, *302*, 1600385, 10.1002/mame.201600385.

33. Kenneth Cerdan; Guy Van Assche; Peter van Puyvelde; Joost Brancart; A novel approach for the closure of large damage in self-healing elastomers using magnetic particles. *Polymer* **2020**, *204*, 122819, 10.1016/j.polymer.2020.122819.

34. Yan Zhang; Hamideh Khanbareh; James Roscow; Min Pan; Chris Bowen; Chaoying Wan; Self-Healing of Materials under High Electrical Stress. *Matter* **2020**, *3*, 989-1008, 10.1016/j.matt.2020.07.020.

35. Hongshuang Guo; Yi Han; Weiqiang Zhao; Jing Yang; Lei Zhang; Universally autonomous self-healing elastomer with high stretchability. *Nature Communications* **2020**, *11*, 1-9, 10.1038/s41467-020-15949-8.

36. B.J. Blaiszik; S.L.B. Kramer; S.C. Olugebefola; J.S. Moore; N.R. Sottos; S.R. White; Self-Healing Polymers and Composites. *Annual Review of Materials Research* **2010**, *40*, 179-211, 10.1146/annurev-matsci-070909-104532.

37. Binder, W. H. . Self-healing polymers. from principles to applications; Binder, W. H., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2014; pp. 446.

38. D.G. Bekas; Kyriaki Tsirka; D. Baltzis; A.S. Paipetis; Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. *Composites Part B: Engineering* **2016**, *87*, 92-119, 10.1016/j.compositesb.2015.09.057.

39. Marianella Hernández Santana; Michael Den Brabander; Santiago García; Sybrand Van Der Zwaag; Routes to Make Natural Rubber Heal: A Review. *Polymer Reviews* **2018**, *58*, 585-609, 10.1080/15583724.2018.1454947.

40. Saul Ismael Utrera-Barrios; Raquel Verdejo; Miguel Angel Lopez-Manchado; Marianella Hernández Santana; Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. *Materials Horizons* **2020**, *7*, 2882-2902, 10.1039/d0mh00535e.

41. Javier Araujo-Morera; Miguel A. López-Manchado; R. Verdejo; Marianella Hernández Santana; Unravelling the effect of healing conditions and vulcanizing additives on the healing performance

of rubber networks. *Polymer* **2021**, *238*, 124399, 10.1016/j.polymer.2021.124399.

42. Prasanta Kumar Behera; Subhra Mohanty; Virendra Kumar Gupta; Self-healing elastomers based on conjugated diolefins: a review. *Polymer Chemistry* **2021**, *12*, 1598-1621, 10.1039/d0py01458c.

43. Fouzia Mashkoor; Sun Jin Lee; Hoon Yi; Seung Man Noh; Changyoon Jeong; Self-Healing Materials for Electronics Applications. *International Journal of Molecular Sciences* **2022**, *23*, 622, 10.3390/ijms23020622.

44. Seppe Terryn; Jakob Langenbach; Ellen Roels; Joost Brancart; Camille Bakkali-Hassani; Quentin-Arthur Poutrel; Antonia Georgopoulou; Thomas George Thuruthel; Ali Safaei; Pasquale Ferrentino; et al. Tutu Sebastian Sophie Norvez Fumiya Iida Anton W. Bosman François Tournilhac Frank Clemens Guy Van Assche Bram Vanderborgh A review on self-healing polymers for soft robotics. *Materials Today* **2021**, *47*, 187-205, 10.1016/j.mattod.2021.01.009.

45. Philippe Cordier; François Tournilhac; Corinne Soulié-Ziakovic; Ludwik Leibler; Self-healing and thermoreversible rubber from supramolecular assembly. *Nature* **2008**, *451*, 977-980, 10.1038/nature06669.

46. Mohammad Abdul Sattar; Archita Patnaik; Design Principles of Interfacial Dynamic Bonds in Self-Healing Materials: What are the Parameters?. *Chemistry – An Asian Journal* **2020**, *15*, 4215-4240, 10.1002/asia.202001157.

47. Kohjiya, S.; Ikeda, Y.. Chemistry, manufacture, and applications of natural rubber; Kohjiya, S.; Ikeda, Y., Eds.; Woodhead Publishing: Cambridge, 2014; pp. 506.

48. Xiao Men; Fan Wang; Guo-Qiang Chen; Hai-Bo Zhang; Mo Xian; Biosynthesis of Natural Rubber: Current State and Perspectives. *International Journal of Molecular Sciences* **2018**, *20*, 50, 10.3390/ijms20010050.

49. S. Toki; T. Fujimaki; M. Okuyama; Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique. *Polymer* **2000**, *41*, 5423-5429, 10.1016/s0032-3861(99)00724-7.

50. Sureerut Amnuaypornsri; Jitladda Sakdapipanich; Shigeyuki Toki; Benjamin S. Hsiao; Naoya Ichikawa; Yasuyuki Tanaka; Strain-Induced Crystallization of Natural Rubber: Effect of Proteins and Phospholipids. *Rubber Chemistry and Technology* **2008**, *81*, 753-766, 10.5254/1.3548230.

51. Javier Carretero-González; Tiberio A. Ezquerra; Sureerut Amnuaypornsri; Shigeyuki Toki; Raquel Verdejo; Alejandro Sanz; Jitladda Sakdapipanich; Benjamin S. Hsiao; Miguel A. López-Manchado; Molecular dynamics of natural rubber as revealed by dielectric spectroscopy: The role of natural cross-linking. *Soft Matter* **2010**, *6*, 3636-3642, 10.1039/c003087b.

52. Sureerut Amnuaypornsri; Shigeyuki Toki; Benjamin S. Hsiao; Jitladda Sakdapipanich; The effects of endlinking network and entanglement to stress-strain relation and strain-induced crystallization

of un-vulcanized and vulcanized natural rubber. *Polymer* **2012**, *53*, 3325-3330, 10.1016/j.polymer.2012.05.020.

53. Shigeyuki Toki; Justin Che; Lixia Rong; Benjamin S. Hsiao; Sureerut Amnuaypornsri; Adul Nimpairoon; Jitladda Sakdapipanich; Entanglements and Networks to Strain-Induced Crystallization and Stress–Strain Relations in Natural Rubber and Synthetic Polyisoprene at Various Temperatures. *Macromolecules* **2013**, *46*, 5238-5248, 10.1021/ma400504k.

54. Toki, S. The effect of strain-induced crystallization (SIC) on the physical properties of natural rubber (NR). In Chemistry, Manufacture, and Applications of Natural Rubber; Kohjiya, S.; Ikeda, Y., Eds.; Woodhead Publishing: Cambridge, 2014; pp. 135-167.

55. Paolo Tanasi; Marianella Hernández Santana; Javier Carretero-González; Raquel Verdejo; Miguel A. López-Manchado; Thermo-reversible crosslinked natural rubber: A Diels-Alder route for reuse and self-healing properties in elastomers. *Polymer* **2019**, *175*, 15-24, 10.1016/j.polymer.2019.04.059.

56. Saul Utrera-Barrios; Marianella Hernández Santana; Raquel Verdejo; Miguel A. López-Manchado; Design of Rubber Composites with Autonomous Self-Healing Capability. *ACS Omega* **2020**, *5*, 1902-1910, 10.1021/acsomega.9b03516.

57. Marianella Hernández; M Mar Bernal; Antonio M Grande; Nan Zhong; Sybrand Van Der Zwaag; Santiago J García; Effect of graphene content on the restoration of mechanical, electrical and thermal functionalities of a self-healing natural rubber. *Smart Materials and Structures* **2017**, *26*, 085010, 10.1088/1361-665x/aa71f5.

58. Meral Yikmis; Alexander Steinbüchel; Historical and Recent Achievements in the Field of Microbial Degradation of Natural and Synthetic Rubber. *Applied and Environmental Microbiology* **2012**, *78*, 4543-4551, 10.1128/aem.00001-12.

59. Marianella Hernández Santana; María Huete; Patricia Lameda; Javier Araujo; Raquel Verdejo; Miguel A. López-Manchado; Design of a new generation of sustainable SBR compounds with good trade-off between mechanical properties and self-healing ability. *European Polymer Journal* **2018**, *106*, 273-283, 10.1016/j.eurpolymj.2018.07.040.

60. Saul Utrera-Barrios; Javier Araujo-Morera; Laura Pulido De Los Reyes; Reyes Verdugo Manzanares; Raquel Verdejo; Miguel Ángel López-Manchado; Marianella Hernández Santana; An effective and sustainable approach for achieving self-healing in nitrile rubber. *European Polymer Journal* **2020**, *139*, 110032, 10.1016/j.eurpolymj.2020.110032.

61. Roberto Martin; Alaitz Rekondo; Alaitz Ruiz de Luzuriaga; Germán Cabañero; Hans J. Grande; Ibon Odriozola; The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. *Journal of Materials Chemistry A* **2014**, *2*, 5710-5715, 10.1039/c3ta14927g.

62. Alaitz Rekondo; Roberto Martin; Alaitz Ruiz de Luzuriaga; Germán Cabañero; Hans J. Grande; Ibon Odriozola; Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. *Materials Horizons* **2013**, *1*, 237-240, 10.1039/c3mh00061c.

63. Kathryn O’Harra; Naroa Sadaba; Mikel Irigoyen; Fernando Ruipérez; Roberto Aguirresarobe; Haritz Sardon; Jason E. Bara; Nearly Perfect 3D Structures Obtained by Assembly of Printed Parts of Polyamide Ionene Self-Healing Elastomer. *ACS Applied Polymer Materials* **2020**, *2*, 4352-4359, 10.1021/acsapm.0c00799.

64. Ali Aboudzadeh; Mercedes Fernandez; Maria Eugenia Muñoz; Antxon Santamaría; David Mecerreyres; Ionic Supramolecular Networks Fully Based on Chemicals Coming from Renewable Sources. *Macromolecular Rapid Communications* **2013**, *35*, 460-465, 10.1002/marc.201300732.

65. Javier Araujo-Morera; Marianella Hernández Santana; Raquel Verdejo; Miguel Angel López-Manchado; Giving a Second Opportunity to Tire Waste: An Alternative Path for the Development of Sustainable Self-Healing Styrene–Butadiene Rubber Compounds Overcoming the Magic Triangle of Tires. *Polymers* **2019**, *11*, 2122, 10.3390/polym11122122.

66. Luis E. Alonso Pastor; Karina C. Núñez Carrero; Javier Araujo-Morera; Marianella Hernández Santana; José María Pastor; Setting Relationships between Structure and Devulcanization of Ground Tire Rubber and Their Effect on Self-Healing Elastomers. *Polymers* **2021**, *14*, 11, 10.3390/polym14010011.

67. Roberto Martín; Alaitz Rekondo; Jon Echeberria; Germán Cabañero; Hans J. Grande; Ibon Odriozola; Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. *Chemical Communications* **2012**, *48*, 8255-8257, 10.1039/c2cc32030d.

Retrieved from <https://encyclopedia.pub/entry/history/show/56377>