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Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease in which environmental and genetic factors are

involved. Although the molecular mechanisms involved in NAFLD onset and progression are not completely

understood, the gut microbiome (GM) is thought to play a key role in the process, influencing multiple physiological

functions. 
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1. Introduction

GM alterations in diversity and composition directly impact disease states with an inflammatory course, such as

non-alcoholic steatohepatitis (NASH). However, how the GM influences liver disease susceptibility is largely

unknown. Similarly, the impact of strategies targeting the GM for the treatment of NASH remains to be evaluated.

This review provides a broad insight into the role of gut microbiota in NASH pathogenesis, as a diagnostic tool, and

as a therapeutic target in this liver disease. We highlight the idea that the balance in metabolic fermentations can

be key in maintaining liver homeostasis. We propose that an overabundance of alcohol-fermentation pathways in

the GM may outcompete healthier, acid-producing members of the microbiota. In this way, GM ecology may

precipitate a self-sustaining vicious cycle, boosting liver disease progression.

2. The Gut Microbiome in Non-Alcoholic Fatty Liver Disease
(NAFLD) 

Accumulated evidence indicates that the GM interacts with the liver via the so-called the “liver–gut axis” .

Dysfunction of this axis, including gut microbial imbalances and mucosa permeability alterations, leads to the

passage of metabolic byproducts of bacterial metabolism as well as microbial components to the portal system

reaching the liver. The microbial components, called pathogen-associated molecular patterns (PAMPs), such as

lipopolysaccharide and peptidoglycan, are capable of inducing inflammatory responses mediated by the activation

of pattern recognition receptors (PRRs), like Toll-like receptor (TLR), in Kupffer cells and hepatic stellate cells,

leading to liver injury and fibrosis . Besides, some metabolic byproducts of bacterial metabolism may interfere

with glucose and lipid metabolism, as discussed below, contributing to the exacerbation of liver disease . On the

other hand, it is well known that GM and bile acids (BAs) closely interact and modulate each other; BAs prevent

intestinal bacterial overgrowth and subsequent gut barrier dysfunction, and the GM regulates bile acid
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composition . Given that BAs modulate host metabolism and immunity, through farnesoid X receptor (FXR) and

membrane-associated G protein-coupled receptor (TGR5) signaling, an imbalance in gut bacteria and BAs may

trigger metabolic diseases, such as NAFLD  (Figure 1).

Figure 1. The effect of gut microbial unbalance in NAFLD. Different factors affect the gut microbiome. Gut

microbial unbalance causes an increase in secondary BAs, which modulates FXR and FGR5 signaling, affecting

the glucose and lipid metabolism and anti-inflammatory immune response. Besides, the increase in certain

microbial metabolites mediates weakening of intestinal tight junction, enabling passage to the systemic circulation

of PAMPs and microbial metabolites (such as ethanol) that reach the liver inducing inflammatory responses, liver

injury and fibrosis. BAs, bile acids; FXR, farnesoid X receptor; PAMPs, pathogen associated molecular patterns;

SCFAs, short-chain fatty acids; TGR5, membrane-associated G protein-coupled receptor; TMA, trimethylamine;

TMAO, trimethylamine N-oxide; VLDL, very low-density lipoprotein.

Specific GM alterations have been correlated with the development and progression of NAFLD, both in human and

in experimental animal models . NAFLD patients exhibit more Gram-negative and fewer Gram-positive

bacteria compared to healthy subjects, and disease progression correlates with phylum-level changes, such as an

increase in Proteobacteria and a decrease in Firmicutes . At the genus level, a significant increase in the

abundance of Bacteroides and a decrease in Prevotella was observed in NASH patients, when compared to

NAFLD patients without NASH . Increased abundance of Ruminococcus in patients with fibrosis was also

reported, as well as a relative increase in Streptococcus in obese patients with NAFLD . These alterations are

specifically linked to hepatic conditions, and are not the byproduct of insulin resistance, as demonstrated by Da

Silva et al. . However, although results point to a correlation between the GM and liver condition, the particular

bacterial species involved are largely discordant across individual studies. These inconsistent results may be

attributed to the lack of control and regularization for factors known to severely impact the GM, such as weight,

diet, and drug intake . Additionally, restricting the analysis to changes in diversity indices or comparisons at

the phylum and other high-rank taxonomic levels is unlikely to yield insight into the molecular mechanisms

involved. For these reasons, we are in need of approaches able to infer causal links, rather than mere statistical
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associations between specific bacterial species and liver conditions. The different methods for characterization of

the GM are shown in Figure 2.

Meta-taxonomical approaches, if merely understood as the analysis of 16S sequences, are probably insufficient to

unravel the causal links between GM composition and diseased states. Bacterial species contain pleomorphic

genomes, with a conserved genetic core conserved among all members of a species, but also an accessory part

that is highly variable among individual clones. The accessory part of the genome is often encoded in plasmids and

other mobile genetic elements, thus subject to frequent change . Due to this intrinsic genomic plasticity, strains of

the same species frequently display significant phenotypic differences. Alternate metabolic profiles and even

distinct virulence levels are common among strains of the same species, as exemplified by pathogenic and

commensal E.coli . As a consequence, meta-taxonomy alone may be unable to discriminate between

strains that promote hepatic damage from those that do not. Similarly, if hepatic damage is the by-product of

bacterial metabolism, it is likely that strains from different species produce similar hepatotoxic compounds as, in

many species, non-essential, adaptive metabolic pathways are often encoded in mobile genetic elements .

Although the specific bacterial strains and species involved in NAFLD are still unknown, there is ample evidence

that GM perturbations have a causal role in the development of the disease, rather than being a mere

consequence of it. In animal models, it was shown that introducing a conventional GM in axenic mice increased

monosaccharide absorption and triggered liver lipogenesis . Similarly, faecal transplants from human donors with

hepatic steatosis triggered a rapid development of hepatic steatosis in mice . These phenomena suggest that

GM does affect the host energy metabolism and fat storage. It may be thus key in the systemic inflammation

associated with obesity, which leads to insulin resistance and hepatic steatosis. The molecular mechanisms by

which GM alterations translate into hepatic damage are uncertain. However, several studies identified microbial

metabolites associated with NAFLD, suggesting a role of certain gut-microbiome-derived metabolites in the

pathogenesis and progression of NAFLD .
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Figure 2. Methods for characterizing gut microbiota. 16S rRNA is highly conserved among bacterial species,

except that it contains hypervariable regions that confer phylogenetic association; thus, 16S rRNA gene

sequencing is widely used for phylogenetic reconstruction and quantification of microbial diversity. However, this

technique does not make it possible to decipher functional changes in the microbiome or to find out the true impact

of gut microbes on disease states. For this reason, several -omics approaches were put forward. These methods

dig into genes for genetic information storage, transcription for gene expression, proteins for structural and

metabolic activities, and metabolites for end products of metabolism. cDNA, complementary DNA; ITS2, internal

transcribed spacer 2; rRNA, ribosomal RNA.
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