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For drugs, such as antiepileptic drugs (AEDs), whose therapeutic or toxic effects are more closely related to blood levels

than to a specific dose, monitoring of plasma levels plays a crucial role. Many drugs used in epilepsy therapy often cause

acute poisonings (carbamazepine, oxcarbazepine, valproic acid, lamotrigine). AEDs do not have an ideal pharmacokinetic

profile, which at the same time qualifies them to monitor both in the therapeutic and toxic aspects. Currently, a great

benefit for patients using various AEDs is adjusting the dosage to their individual needs and monitoring sufficient blood

concentrations. There is still a need to develop new, rapid methods that meet the validation criteria. This trend has been

observed in the last few years in the bioanalysis of different type of biological samples, not only blood, serum or plasma,

but also saliva and blood/serum/plasma dried spots technique.
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1. Introduction

About 70 million people worldwide suffer from epilepsy, a neurological disease that negatively affects patients’ quality of

life and that of their families. Antiepileptic drugs (AEDs), despite many scientists’ and the medical community’s efforts, are

still the basic tool in the treatment of patients with epilepsy, a disease of unknown etiology. To date, about thirty first–third

generation AEDs are used in various types of epilepsy. The new AED cenobamate (CNB) was approved by the US FDA in

2019 to reduce uncontrolled partial-onset seizures in adults . AEDs possess a long tradition in the treatment of

different modes of epilepsy and over the decades many analytical methods have been developed for the therapeutic

monitoring of AEDs. More improved liquid chromatography (LC) methods have also appeared in the last years, based

mainly on sensitive mass spectrum detection. Generally, the elaborated methods are focused on determining many AEDs

and their metabolites in one analytical run. The main problem of recent years has been developing procedures for sample

micronization and automatic preparation of clinical material for quantitative determination. Microextraction techniques like

solid-phase microextraction (SPME), single-drop microextraction (SDME), or dispersive liquid-liquid microextraction

(DLLME) were elaborated for the isolation of many medicines, including AEDs, from biological matrices.

Therapeutic Drug Monitoring (TDM) of AEDs involves measuring the drug concentrations in blood, serum, or plasma to

improve the efficacy of applied treatment according to known rule if you can’t measure it, you can’t improve it. TDM was

introduced in the late 1960s to minimize the toxicity effect caused by aminoglycosides. The main aim of TDM is to

optimize drug exposure to minimize toxicities and maximize efficacy. The therapeutic tool is particularly essential when a

drug that has a narrow therapeutic window and is characterized by a significant correlation between drug concentration

and its toxicity, and when the clinical results depend on the drug level—total and/or free in the blood, not on the dose

taken . AEDs are monitored mainly due to the high inter-individual variability resulting from non-linear pharmacokinetics

and the narrow therapeutic scope. New reference ranges were established for total and free concentrations of AED’s .

Essentials are interactions of AEDs in the pharmacokinetic phase. Carbamazepine (CBZ), oxcarbazepine (OXC),

vigabatrin (VGB) are indicated for epileptic patients with focal seizures. Clobazam (CLB) for myoclonic episodes and

valproic acid (VPA) are dedicated to generalized epilepsy. Levetiracetam (LEV), lamotrigine (LTG), rufinamide (RFM),

topiramate (TPM), and zonisamide (ZSM) with a broad spectrum of action are used for most types of seizures. They

require monitoring also due to the rapid absorption process, short half-life or changing with dose (nonlinearity) and

significant changes in concentrations during the day or the degree of binding with blood proteins .

Recommendations for TDM in the treatment of epilepsy are the following :

small differences between the toxic effect of the drug and the symptoms of the disease

doses of the drug that do not relieve symptoms

patient belongs to one of the groups at increased risk: Elderly, children, pregnant, patients with renal and hepatic

dysfunction
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required changes in the dosage of a given drug when the patient is in weak condition

the use of polytherapy of AED’s drugs

a drug with dose-dependent—non-linear pharmacokinetics.

Currently, a great benefit for patients using various AEDs is adjusting the dosage to their individual needs and monitoring

the sufficient concentrations. To correctly interpret the results obtained during TDM, pharmacokinetics knowledge on

absorption, distribution, biotransformation, drug excretion and an understanding of the physiological, pathophysiological

and environmental factors affecting the therapy’s success are necessary .

Initially in TDM colorimetric methods were used, and later more modern techniques were implemented, such as

immunochemistry in the early 1980s, or LC. In the 2000s, the LC-MS method allowed for the quantification of free drug

concentrations in biological matrices, mainly in plasma and interstitial fluids, with very sensitive detection . The control of

drug concentrations has provided a new perspective in the treatment in line with pharmacokinetic principles and clinical

observations .

The matrix for TDM is often plasma or serum, rarely urine through, and increasingly unstimulated saliva, DBS or dried

saliva spot (DSS). For a reliable test, the concentration of free drug in the blood has to be measured that reflects effective

levels in the brain, heart tissue. In most clinical trials, the ratio between free and bounded fractions is constant at the

equilibrium state. Therefore, a measurement of the total concentration (protein-bounded and free form) is acceptable in

drugs with low protein binding. Such analysis is more comfortable, cheaper and requires less time expenditure .

Sample preparation is a crucial step during the whole process of the quantitative determination of the clinical samples.

Simple protein precipitation or different extraction procedures before injection into LC of monitored analytes is equally

important as a separation technique before detection. The most useful method for extraction includes liquid-solid, liquid-

gas or liquid-liquid extraction, and mechanical separation. It is also essential to precisely determine the degree of

reliability of a given method using statistical parameters known as the validation process. Validation determines the

suitability of analytical methods based on the evaluation of validation parameters, like selectivity, recovery, calibration

curve, determination of the linearity range, sensitivity, accuracy, precision, limit of quantification (LOQ), and limit of

detection (LOD). Designed for the TDM bioanalytical method has to fulfill validation criteria established mainly by the

European Medicines Agency (EMA)  or the Food Drug Administration (FDA) .

2. Bioanalytical Methods

Methods that meet the validation criteria, including high sensitivity and selectivity, are the basis for TDM, and finally, for

effective and safe pharmacotherapy. This statement also applies to AEDs, for which monitoring of drug concentrations

becomes the rule nowadays, not only in terms of total concentration (VPA, PHT, CBZ, GBP, LTG, lithium, TPM, LEV) but

also of unbound fractions, especially for those drugs with a high (90%) or even higher protein binding rate. Free

concentrations of many AEDs including PHT, CBZ, and VPA are in some laboratories routinely determined. An increase in

TDM is expected for the most recent AEDs for which the therapeutic concentration ranges have been established. This

concerns BRV (0.2–2 mg/L), PER (0.1–1 mg/L), STM (2–10 mg/L) and STP (4–22 mg/L) . For other AEDs: ESL, LTG,

OXC, PGB, TPM, and VPA, the reference ranges have been updated or harmonized. It can be expected that free fraction

will be determined for other AEDs: CLB, and its active metabolite N-CLB, PER, TGB, retigabine, STP, medicines with high

protein binding .

There is still a need to develop new, rapid methods that meet the validation criteria. This trend has been observed in the

last few years in the bioanalysis of AEDs, where LC-MS/MS is a dominated technique; however, it is costly. Data

presented in the review show that near 50% of the LC methods applied the high-resolution detection despite the technical

problems with the stability of MS/MS response. The sensitivity connected with the high-resolution LC-MS/MS causes that

deuterated analogues of the AEDs are used as effective internal standards even with very small differences in molecular

mass as well as retention time . There is still an increase in the full

automatization of analytical determination of AEDs in order to decrease hands-on time as well as consumption of organic

solvents, protect the natural environment and improve the analytical process in terms of accuracy, precision, repeatability,

and sensitivity. To realize the purpose also different microextraction techniques for AEDs analysis were developed,

including ultrasound-assisted emulsification microextraction , MEPS , microextraction combined with micro-

derivatization-increased detection (MDID) , DLLME . Automatization was applied for the DBS extraction of VPA,

PHB, PHT, CBZ and its active 10,11 epoxide . The effective online SPE coupled with an analytical column of LC-HRMS

system was applied for quantification of the first generation of AEDs: PHB, PHT and CBZ and its active metabolite in

clinical samples . The interesting idea seems to be online extraction using RACNTs for analysis of CBZ, PHB and PRM,

previously used only for extraction cadmium and lead .
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However, traditional protocols with steps involving sample preparation using traditional LLE and newer SALLE , as well

as protein precipitation, are frequently applied in the bioanalysis of AEDs, more often than advanced micro-extraction

techniques.

Among the presented LC methods, the columns with different length, dimensions and particle sizes based on popular

lipophilic chain C-18 are very often applied. Generally, in LC-MS/MS and UHPLC-MS/MS, the columns are characterized

by dimensions of 2–3 mm, and smaller than 5 µm particle size (1.7–3.5 µm). The other types of LC columns, like those

containing biphenyl phase , chiral column Chiracel with normal phase , or columns with cyano stationary phase

(polar phase)  were rarely used in quantification of AEDs. Less popular methods like MEKC gained attention for TDM of

PIR , capillary electrophoresis for TPM and PRM . Worth mentioning is that HPTLC, not so useful in TDM was

also developed for determination of OXC and ESL in biological samples . The GC-MS technique loses its importance

compared to LC-MS/MS, although it has been developed in recent years to determine TPR , GBP , LCM .

Moreover, alternative specimen sampling is proposed employing non-invasive and patient-friendly techniques, including

DBS or collection of saliva. These alternative specimens, appropriate for TDM, are especially valuable in specific clinical

situations involving pediatric patients or critically ill patients.
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