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Monitoring soil organic carbon (SOC) typically assumes conducting a labor-intensive soil sampling campaign,

followed by laboratory testing, which is both expensive and impractical for generating useful, spatially continuous

data products. 
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1. Introduction

Soil represents a complex mixture of organic and inorganic constituents with different physical and chemical

properties, which vary significantly between locations and even within a single field . It is a key component of

terrestrial ecosystems, as it facilitates the circulation of energy and materials between the atmosphere and the

biosphere .

Soil health can be defined as the ability of the soil to function effectively as a component in a thriving ecosystem .

In order to ensure effective monitoring and enable adequate assessment of the condition of the soil, one needs to

select appropriate indicators of its condition. The indicators should meet certain criteria: they should be accepted

by experts as valid; their measurement should be carried out routinely and on a large scale; they need to be

understood and accepted by the general population in order to achieve a global impact .

Soil organic carbon (SOC) content is a widely accepted indicator of soil quality, as SOC plays a central role in

various soil functions . SOC measurement is a common component of soil property analysis. Furthermore,

carbon as an element is well known and recognized by the global population . All of this makes SOC a valuable

indicator for assessing and monitoring changes in soil health.

The amount and quality of SOC are closely related to key soil functions, including nutrient mineralization,

aggregate stability, air and water permeability, water retention, and flood control ability . These soil functions are,

in turn, related to a wide range of ecosystem attributes. For example, high SOC levels in mineral soils tend to

correlate with high plant productivity, which has a positive effect on wildlife habitat, distribution, and population size
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. Through the protection and increase of stored SOC, one can protect or increase soil fertility, reduce soil erosion,

and reduce habitat conversions .

In addition to its importance for the soil, SOC has the potential to help neutralize the negative effects of increasing

concentrations of CO  in the atmosphere (which significantly contribute to global warming and climate change )

and help ensure food security around the wold .

While SOC plays a key role in mitigating climate change by acting as a carbon sink, the historical loss of carbon

from this pool  has been significant, and the potential for future accelerated loss under warming scenarios is a

serious threat .

As a natural solution to fight climate change, strategies that involve conserving existing SOC stocks (avoidance of

losses) and replenishing stocks in carbon-depleted soils  can be used as a means of achieving the United

Nations Sustainable Development Goals (UNSDG), the goals of the United Nations Framework Convention on

Climate Change (UNFCCC), and the United Nations Convention on Combating Desertification (UNCCD) .

Despite the scientific consensus about the potential and myriad benefits that can be brought about by the

development and application of soil organic carbon storage and sequestration techniques, they remain limited in

practice. A fundamental issue affecting the adoption of such methodologies is the lack of accurate and cost-

effective ways of measuring SOC content in the top layer of the soil (as this is most affected by land use,

agricultural practices, etc.).

When it comes to measuring global SOC stocks, many estimates have been published over the past decades, and

most studies report a global SOC estimate of approximately 1500 Pg of carbon (Pg C), but there is considerable

variation among estimates (ranging from 504 to 3000 Pg C) .

The large variation in the estimates of global SOC stocks arises from differences in the sampling period, the

intensity and spatial resolution of soil profile databases, as well as from differences in approaches to calculating the

estimates themselves . The uneven distribution of georeferenced soil profiles around the world is another reason

for such a large variation in the estimates . In addition, there is no consensus when it comes to including

inorganic carbon, different levels of rock content , and the effects of natural or anthropogenic phenomena (such

as flooding, erosion, fire, soil fertilization, and plowing ) in carbon stock assessments.

2. Monitoring Soil Organic Carbon Based on Remote
Sensing 

recent years, remote sensing has emerged as a particularly effective method for tracking agricultural and

environmental changes . The technology relies on diverse sensors and platforms, such as satellite

constellations and Unmanned Aerial Systems (UAS) to gather data, which are then typically processed using

advanced algorithms, often in the realm of machine learning (ML) and deep learning (DL) .
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Deep learning represents a specialized subset of machine learning that excels at learning from large, unstructured

datasets using complex, layered neural networks. While traditional ML algorithms work well with smaller, structured

datasets and often require manual feature selection, DL algorithms automatically extract features and patterns,

especially from data like images and speech. This makes deep learning more powerful for certain applications, but

it requires more computational resources and is often less interpretable than conventional machine learning

techniques.

The ongoing advancements in remote sensing represent a promising alternative to traditional SOC monitoring. Toth

and Jóžków provide a fairly recent review of different remote sensing platforms and sensors available today .

In the research presented here, the focus is on inferring SOC content from satellite data only. Most studies focused

on determining SOC, however, rely on data (spectrograms) collected from hand-held sensors. While the accuracy

achieved in this way is typically higher than using satellite imagery, such approaches can hardly be scaled to

enable continuous monitoring of carbon stocks on a global level.

Gomez et al.  presented an early, albeit limited study (based on just 146 soil samples), which compared the

results that can be achieved applying ML methods to in-the-field Vis–NIR measurements vs. applying them to

hyperspectral satellite imagery. The images were obtained from the Hyperion sensor on the EO-1 satellite, which

is, unfortunately, no longer functional, and there is no longer an active hyperspectral satellite that captures images

in the VNIR–SWIR region, making it hard to replicate their work. In addition to trying to model the whole dataset

used in the study, the authors tried focusing on specific land cover classes (cropping soils, pasture soils) and opted

for a partial least-squares regression as their SOC predictor. Gomez et al. observed that the SOC in their cropping

soils ranged between 0.54% and 1% and was lower than in the pastures, where SOC was in the 1.08% to 5.1%

range. They evaluated their methodology based on R  and the Root-Mean-Squared Error (RMSE). The models

based on satellite imagery did not perform well for cropping soils (R  of 0.04 and RMSE of 0.11) and lagged

significantly behind the hand-held-sensor-based models in terms of R  (R  of 0.16 and RMSE of 0.1). However,

when evaluated on pastures and the whole dataset, the two approaches achieved comparable and much better

performance. The approach based solely on satellite data at their native resolution achieved an R  of 0.51, but the

RMSE was quite high (0.73% SOC). Thus, the study showed that land cover is very important, when it comes to

modeling and estimating SOC remotely.

More recently, Wang et al.  tried to use ML techniques to estimate SOC stock in the semi-arid rangelands of

eastern Australia through the application of different machine learning techniques, with a focus on evaluating the

impact of considering seasonal fractional cover on model performance. These features were used to extend other

hand-crafted features derived from satellite imagery, as well as other remotely sensed climate features such as

rainfall and temperature and data about lithology. They trained and evaluated their models using a limited amount

of soil samples (705). They used random forests (RF) , Boosted Regression Trees (BRT) , and support vector

machines (SVM)  to model their data. The RF approach performed the best and achieved an R  of 0.47 on their

dataset.
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Several studies tried to evaluate the effectiveness of hyperspectral data obtained from airborne sensors and

extended their findings to evaluate the expected performance of sensors expected to be deployed in the future 

. While researchers focus on multispectral data in the study presented here, it is worth noting that, albeit relying

on a very limited set of soil samples (81) obtained for a 7 km  area in Luxembourg, 40% of which were used as a

test set, Steinberg et al. achieved a relatively high R  (0.74) and an RMSE of 0.22% for SOC using autoPSLR

applied to hyperspectral data from an airborne sensor . Once sufficient hyperspectral data are available, the

methodology researchers propose can easily be adapted to that domain, leading to even better performance.

Over the last decade, deep learning has revolutionized the area of machine learning and artificial intelligence and

has become the dominant paradigm in the domain. The crucial advance over previously used methods is that the

approach relies on end-to-end learning, which allows the ML models to learn the features on which to make their

decisions and estimated directly from the raw input data, instead of relying on human-engineered features .

Yuan et al. provided an overview of the applications of both classical neural networks and DL models to the

monitoring of environmental parameters using remote sensing data . They showed that DL outperformed

traditional ML models and has led to significant improvements in many applications, including land cover mapping,

vegetation parameter, soil moisture, evapotranspiration, agricultural yield prediction, etc. The authors correctly

highlighted the limitation of the DL approaches, which is related to the relatively limited amounts of training data

available, as well as the potential to apply transfer learning to circumvent this problem. They mentioned two types

of transfer learning: region-based and data-based. The first relates to pretraining on a geographical region for

which ample data are available and adjusting the model to a different region with limited data available. In the ML

community, this is usually referred to as fine-tuning. The latter is more in line with what the meaning of transfer

learning is in the ML domain and relates to transferring the models trained on data obtained from a sensor or a

group of sensors to other sensors. In the study presented here, we use a third kind of transfer learning, common in

the computer vision community , where the initial model is trained on the same type of input data (Sentinel-2),

but for a different visual task (land cover classification), and is used as a feature extractor for the final model (which

performs SOC estimation in researchers' case).

While the first application that Yuan et al. discussed was land cover, no approaches to estimating SOC were

mentioned in this study. In addition, while approaches based on different DNN architectures were discussed (most

relying on convolutional neural networks), none were identified in the study that use the U-Net model.

Rakhlin et al., however, successfully applied U-Net with Lovász softmax loss for land cover classification using

RGB data made available as part of the DeepGlobe Challenge .

Yang et al. used a CNN to try to infer SOC for a central location based on input data that covered the surrounding

region . The input of their model was environmental variables combined with MODIS MCD12Q2 phenology

variables. They trained and evaluated their approach on a limited set of 733 samples, collected in Anhui Province

of China. This limited the complexity of the CNN they could use, since no transfer learning was used in the study,

but the CNN fared better than a random forest model, achieving a modest R  of 0.26.
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Emadi et al.  focused on Northern Iran and used a large number of input features (105). Most were human-

crafted indices extracted from Landsat-8 and MODIS satellite imagery, but their input also included topology-

related parameters, such as curvature, slope, etc. Using a dataset of 1879 composite soil samples and relying on

10-fold cross-validation, they compared the performance of several traditional ML algorithms (support vector

machines, multi-layer-perceptron, regression decision trees, random forests, and extreme gradient boosting) with a

DL model when predicting SOC. The DL model that showed the best results in the study was a fairly simple fully

connected neural net, with seven hidden layers and 50 neurons in each of them, but it still outperformed the other

methods tested. The authors reported a comparatively large R  value of 0.65, with an RMSE of 0.75% SOC.

In a recent study, Castaldi et al.  evaluated the capability of Sentinel-2 time series to estimate soil organic

carbon and clay content at local scale in croplands. The pipeline they proposed relies heavily on human

engineering, both in terms of the features they derived from Sentinel-2 imagery (NDVI, NBR2, BSI, S2WI), as well

as in terms of how they were used to create the input to their machine learning models. In terms of modeling, they

did not opt for deep neural networks, but the Quantile Regression Forest (QRF) algorithm, QRF with added

longitude and latitude as covariates, and a hybrid approach, the Linear Mixed-Effect Model (LMEM), which

included the spatial autocorrelation of the soil properties. While the latter takes spatial information into account up

to a point, their approach is essentially pixel based, which differs from the one proposed here. In addition, the

authors of the research aimed to assess the capability of their approach in a very limited scenario, by creating and

evaluating models for each of their test sites separately. No attempt was made to create a single model that could

be applied globally, or at least for a large part of the Earth’s surface. Thus, the results they achieved could be

viewed as a sort of “blue-sky-performance”, which could be reached by a global model using Sentinel-2 images as

the input. The R  of the best of Castaldi et al.’s models ranged from 0.26 to an impressive 0.96 for different

locations, with an average R  of 0.67. The RMSE (in % SOC) ranged from 0.09 to 0.22 and was 0.152 on average.
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