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The global warming and the dangerous climate change arising from the massive emission of CO2 from the burning

of fossil fuels have motivated the search for alternative clean and sustainable energy sources. However, the

industrial development and population necessities make the decoupling of economic growth from fossil fuels

unimaginable and, consequently, the capture and conversion of CO2 to fuels seems to be, nowadays, one of the

most promising and attractive solutions in a world with high energy demand. In this respect, the electrochemical

CO2 conversion using renewable electricity provides a promising solution. However, faradaic efficiency of common

electro-catalysts is low, and therefore, the design of highly selective, energy-efficient, and cost-effective

electrocatalysts is critical. Carbon-based materials present some advantages such as relatively low cost and

renewability, excellent electrical conductivity, and tunable textural and chemical surface, which show them as

competitive materials for the electro-reduction of CO2.

carbon dioxide  electro-reduction  carbon-based materials  value-added products

1. Introduction

The energy supply currently depends mostly on fossil fuels, causing a continuous accumulation and, therefore, an

excess of CO  in the atmosphere, bringning negative effects on the environment. The population and live

standards growth make nor imaginable the decoupling of energy supply from fossil fuels. Faced with this situation,

different altenatives have been proposed to mitagate the enviromental impact and dependence on nonrenewable

energy sources. The conversion of CO  into value-added products by chemical reactions seems to be the most

promising and attractive solution since, together with the reduction of the atmospheric CO  levels, CO  is efficiently

recycled stablishing an ideal zero-emission carbon balance. CO  can be converted to added-value products by

photochemical , thermochemical , radiochemical  , biochemical , and

electrochemical strategies . However, the most interesting alternative is the capture and use of CO  as

raw material to produce various products ( Table 1) through its electrochemical reduction since this is a flexible and

controllable process with mild and safe operating conditions and low equipment cost, which also allows coupling

environmentally friendly non-fossil energy from renewable sources. Taking into account these advantages, many

efforts have been made worldwide in the development and improvement of the technology available for CO

electro-conversion.

Table 1. Equilibrium potential and Gibbs free energy for CO  reduction reactions.

2

2

2 2

2

[1][2][3][4] [5][6][7][8] [9] [10] [11][12][13][14]

[15][16][17][18]
2

2

2



From CO2 to Value-Added Products | Encyclopedia.pub

https://encyclopedia.pub/entry/8166 2/9

However, despite the fact that electro-reduction of CO  (CO RR) is thermodynamically viable, its transformation

presents very slow reaction kinetics and usually requires significant energy expenditure  due to the high stability

and inertness of the CO  molecule . Therefore, an extensive research has been developed by the overall

scientific community focused on the electrocatalyst design, since the efficiency and selectivity of the reduction

reaction is strongly dependent on the electrode nature, properties, and configuration . An ideal catalyst for CO

electroreduction requires: (i) Being able to mediate the transfer of electrons coupled to protons, (ii) having a low

over potential for the activation of the CO  molecule, (iii) exhibiting a selectivity preferably towards a target product,

and (iv) preserving structural integrity during prolonged operation.

Lately, carbon-based catalysts have attracted much attention due to their relatively low cost and renewability, good

chemical stability, excellent electrical conductivity, tunable textural and chemical surface, and large surface area,

containing micropores, mesopores, and macropores that favor adsorption, access, and diffusion of molecules to

the internal active sites of the material . Due to these particular characteristics, carbon-based materials have

been extensively used as electrocatalysts for CO reduction either as supports to disperse different metallic

particles with several sizes (single-atoms, dual-atoms, nanoparticles) or as direct catalyst by functionalization with

heteroatoms to prepare economical and sustainable metal-free electro-catalysts  . ( Figure 1 ).
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Figure 1. Value-added products using carbon- based catalysts.

2. Metal-Free Carbon Materials as Catalyst

Metal-free carbon-based catalysts emerge as an alternative to overcome the difficulties that arise when using

metals as catalysts, such as their limited availability and poor durability that prevent their application on large

scales. However, the activity of carbon materials itself is poor, so heteroatoms (N, B, S, P, F) are introduced into

the carbon structure to promote electrocatalytic activity and selectivity . Carbon doping with foreign heteroatoms

affects the electronic structure of carbon materials since the different size and electronegativity of such foreign

atoms compared to carbon atoms lead to a charge redistribution and, consequently, modify their electrochemical

catalytic properties . Additionally, the covalent chemical bonds between the carbon and the doped atoms avoid

segregation problems occurring in metal-based catalysts leading to better operational stability . Different

heteroatoms have been used to dope carbon obtaining materials with good electrochemical performance in the

CO  reduction, and among them, N and B have been the most studied.

2.1. N-Doped Carbon-Based Materials

The N atom has a similar size to the C atom but higher electronegativity , therefore the defects caused by

nitrogen doping can break the electroneutrality of C atoms in the hexagonal carbon structure  leading to an
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enhanced electronic/ionic conductivity without distortion in the local geometry that influences the electrocatalytic

activity . N-doped carbons have shown to be promising candidates as catalysts for the electro-reduction of CO

due to the low over-potentials obtained, the high activity, stability, and selectivity towards certain products ascribed

to this surface properties modification. The nitrogen species are located in several places within the carbon

skeleton, which results in different active sites. The electrocatalytic behavior of the N-doped carbons towards

CO RR is deeply dependent on the type of nitrogenated surface group and its content .

2.1.1. N-Doping Methodology and N-Doped Catalyst Active Sites

Different carbon and nitrogen precursors have been used for the synthesis of N-doped carbon electrocatalysts

(Table 2). Two main doping strategies have been developed: In situandpost-doping treatments. The first consists of

simultaneously perform both the synthesis and doping of carbon-based materials at the same time; while in the

second, the carbon material is first synthesized and then doped in a subsequent process . After doping, four

types of nitrogen species can be identified in the carbon skeleton by XPS: Pyridinic (398.5 eV), pyrrolic/pyridonic

(399.9 eV), quaternary or graphitic N (401.0 eV), and oxidized pyridinic species (403.4 eV) . The total amount

of nitrogen fixed on the carbon structure and the nature of N functionalities clearly depends on the N precursor

source, doping methodology, and carbon material.

Table 2. Carbon and nitrogen precursors to construction of electrocatalysts and active sites.
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 N-doping type,  N total,  Pyridinic,  Pyrrolic,  Graphitic,  Oxide.
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