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Sensor fusion can be considered as the mapping of different modalities into a common latent space where different

features of the same object can be associated together. Sensor fusion frameworks are classified into four

categories: input fusion, ROI fusion, feature map fusion, and decision fusion.

automotive radars  radar signal processing  object detection  multi-sensor fusion

deep learning

1. Overview

Different sensors observe and represent an object with different features. Sensor fusion can be considered as the

mapping of different modalities into a common latent space where different features of the same object can be

associated together. The conventional taxonomy of fusion architectures into early (input), middle (feature), and late

(decision) fusion is ambiguous for neural-network-based detection. For example, in the definition of late fusion, we

cannot distinguish between ROI-level (without category information) fusion and object-level (with category

information) fusion. Therefore, fusion methods are explicitly classified here according to the fusion stage. This is

beneficial because different fusion stages correspond to different levels of semantics, i.e., the classification

capabilities. As shown in Figure 1, fusion architectures are classified into four categories: input fusion, ROI fusion,

feature map fusion, and decision fusion.
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Figure 1. Overview of radar and camera fusion frameworks. The fusion frameworks are classified into input fusion,

ROI fusion, feature map fusion, and decision fusion. For ROI fusion, two architectures are further investigated:

cascade fusion, which projects radar proposals to image view, and parallel fusion, which fuses radar ROIs and

visual ROIs.

2. Input Fusion

Input fusion is applied to the radar point cloud. It projects radar points into a pseudo-image with the range, velocity,

and RCS as channels . Then, similar to an RGB-depth image, the radar pseudo-image and the visual image

are concatenated as a whole. Finally, a visual detector can be applied to this multi-channel image for detection.

Input fusion does not make independent use of the detection capability of radar. In other words, the radar and

vision modalities are tightly coupled. Assuming good alignment between modalities, it makes it easier for the

network to learn joint feature embeddings. However, an obvious disadvantage is that the architecture is not robust

to sensor failures.

The fusion performance depends on the alignment of radar detections with visual pixels. The difficulties lie in three

aspects: Firstly, the radar point cloud is highly sparse. Many reflections from the surface are bounced away due to

specular reflections. As a result, the detected points are sparsely distributed over the object. In addition to the

sparsity, the lateral imprecision of radar measurements leads to further difficulties. The radar points can be out of

the visual bounding box. The imprecision comes from different aspects, e.g., imprecise extrinsic calibration, multi-

path effects, and low angular resolution. The third limitation is that low-resolution radar does not provide height
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information. To address these difficulties, some association techniques are required. Relying on the network to

implicitly learn association is a hard task, because the network tends to simply ignore the weak modality, such as

radar. The expansion methods described previously  can be applied as a preprocessing stage for input fusion.

However, object detection does not require such a strict association as depth completion, so some of the

expansion methods are too costly for real-time processing. Nobis et al.  utilised the lightweight height extension

as preprocessing. Both Chadwick et al.  and Yadav et al.  added a one-layer convolution to radar input before

concatenation. This convolutional layer can be considered as a lightweight version of the association network.

Radar detections at different ranges require different sizes of the receptive field for association. Therefore, Nobis et

al.  concatenated the radar pseudo-image with image feature maps at multiple scales.

3. ROI Fusion

ROI fusion is adapted from the classical two-stage detection framework . Regions of interest (ROIs) can be

considered as a set of object candidates without category information. The fusion architecture can be further

divided into cascade fusion and parallel fusion. In cascade fusion, radar detections are directly used for region

proposal. Radar points are projected into image view as the candidate locations for anchors. Then, the ROI is

determined with the help of visual semantics. In the second stage, each ROI is classified and its position is refined.

Nabati et al.  adopted two techniques to improve the anchor quality. They added offsets to anchors to model the

positional imprecision of radar detections. To mitigate the scale ambiguity in the image view, they rescaled the

anchor size according to the range measurements. In their following work , they directly proposed 3D bounding

boxes and then mapped these boxes to the image view. In this way, the rescaling step can be avoided. It is also

possible to propose the region on the radar point cloud using visual ROIs. For example, CenterFusion  proposed

a frustum-based association to generate radar ROI frustums using visual bounding boxes.

Cascade fusion is particularly well suited for low-resolution radars, where the radar point cloud has a high detection

recall, but is very sparse. However, there are two potential problems with the cascade structure. Firstly, the

performance is limited by the completeness of the proposed ROIs in the first stage. In other words, if an object is

missed, we cannot recover it in the second stage. The second problem is that the cascade structure cannot take

advantage of modality redundancy. If the radar sensor is nonfunctional, the whole sensing system will fail.

Therefore, it is necessary to introduce a parallel structure to ROI fusion. Nabati et al.  adopted a two-branch

structure for ROI fusion. The radar and visual ROIs are generated independently. Then, the fusion module merges

radar ROIs and visual ROIs by taking a set union, while the redundant ROIs are removed through NMS. To enable

the adaptive fusion of modalities, Kim et al.  proposed a gated region of interest fusion (GRIF) module for ROI

fusion. It first predicts a weight for each ROI through a convolutional sigmoid layer. Then, the ROIs from radar and

vision are multiplied by their corresponding weights and elementwise added together.

4. Feature Map Fusion
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Feature-map fusion leverages the semantics from both radar and images. High-resolution radars can provide

sufficient semantic cues for classification. Therefore, feature map fusion utilises two encoders to map radar and

images into the same latent space with high-level semantics. The detection frameworks are flexible, including one-

stage methods  and two-stage methods . The one-stage methods leverage two branches of neural

networks to extract feature maps from radar and images, respectively, and then concatenate the feature maps

together. The two-stage fusion methods are adapted from the classical fusion architecture AVOD . They firstly

fuse the ROIs proposed from the radar and image in the first stage. In the second stage, the fused ROIs are

projected to the radar and visual feature maps, respectively. The feature maps inside the ROIs are cropped and

resized to an equal-sized feature crop. The feature crop pairs from the radar and image are then fused by the

elementwise mean and sent to a detection head. Generally speaking, the two-stage method has better

performance, but it is much slower than the one-stage method. Anchor-free methods  further avoid the

complicated computation related to anchor boxes, such as calculating the IOU score during training.

Feature map fusion allows the network to flexibly combine radar and visual semantics. However, the fusion network

may face the problem of overlooking weak modalities and modality synergies . Some training techniques are

needed to force the network to learn from radar input. Nobis et al.  adopted a modalitywise dropout approach that

randomly deactivates the image branch during training. Lim et al.  used a weight freezing strategy to fix the

weights of the pre-trained feature extractors when training the fusion branch. Experiments show that freezing only

the image branch works best. However, the fusion of multiple modalities is not guaranteed to always be better than

using a single modality. Sometimes, we want the network to lower the weight of the radar branch if it gives noisy

inputs. To achieve adaptive fusion, Cheng et al.  adopted self-attention and global channel attention  in their

network. The self-attention is used to enhance real target points and weaken clutter points. Then, the global

attention module is applied to estimate modality-wise weights. Bijelic et al.  estimated the sensor entropy as the

modality weight. For each modality, the entropy was evaluated pixel-wise as a weight mask. Then, these weight

masks are multiplied with the corresponding feature maps at each fusion layer.

5. Decision Fusion

Decision fusion assumes that objects are detected independently by different modalities and fuses them according

to their spatial-temporal relationships. This structure realises sensing redundancy at the system level and is

therefore robust to modality-wise error. Due to the low resolution of radar, most existing studies do not explicitly

consider the category information estimated by radar. In other words, they only fuse the location information from

radar and vision branches, while retaining the category information estimated by vision. Since the next-generation

4D radar can provide classification capabilities, it is expected that future fusion frameworks should consider both

location and category information.

The location can be optimally fused in a tracking framework. Different objects are first associated and then sent to

a Bayesian tracking module for fusion. Due to the low resolution of radar, association is difficult to achieve in some

scenarios, e.g., a truck splitting into two vehicles or two close objects merging into one. Such association ambiguity

can be mitigated using a track-to-track fusion architecture . By estimating tracks, temporal information can be
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leveraged to filter out false alarms and interpolate missed detections. Some researchers exploit deep learning to

make a better association between radar and other modalities. RadarNet  proposed an attention-based late

fusion to optimise the estimated velocity. Firstly, they trained a fiver-layer MLP with softmax to estimate the

normalised association scores between each bounding box and its nearby radar detections. Then, they predicted

the velocity by weighted averaging of the radar-measured velocities using the association scores. AssociationNet

 attempts to map the radar detections to a better representation space in the contrastive learning framework. It

first projects radar objects and visual bounding boxes to the image plane as pseudo images. To utilise the visual

semantics, they concatenated these pseudo images with the original image. Next, the concatenated images are

sent to an encoder–decoder network to output a feature map. Representation vectors are extracted from the

feature map according to the locations of radar detections. A contrastive loss is designed to pull together the

representation vectors of positive samples and push away the representation vectors of negative examples. During

inference, they compute the Euclidean distance between the representation vectors of all possible radar–visual

pairs. The pairs with a distance below the threshold are considered associative.

Category information, especially the conflict in category predictions, is difficult to handle in sensor fusion. BayesOD

 proposes a probabilistic framework for fusing bounding boxes with categories. The locations of bounding boxes

are modelled by Gaussian distributions. The category prior is modelled as a Dirichlet distribution, thereby allowing

a Dirichlet posterior to be computed in closed form. Then, the bounding box with the highest categorical score is

considered as the cluster centre, while the other bounding boxes are treated as measurements. Finally, Bayesian

inference is used to optimally fuse the location and category information of these bounding boxes. Probabilistic

methods have their inherent shortage in modelling the lack of knowledge . For example, a uniform distribution

brings confusion if either the network has no confidence in its prediction or the input is indeed ambiguous for

classification. In contrast, set-based methods have no such problem. Chavez et al.  leveraged the evidential

theory to fuse the LiDAR, camera, and radar. They considered the frame of discernment, i.e., the set of mutually

exclusive hypotheses, as  , and assigned each possible

hypothesis, i.e., a subset of  Ω, with a belief. In the case of object detection, possible hypotheses are selected

according to sensor characteristics. For example, a car is sometimes confused as part of a truck. Thus, if a car is

detected, evidence should be also put into the set {c,t} and the set of ignorance Ω. Accordingly, we can assign the

belief m to a car detection as

(1)

where γ  is a discounting factor to model the uncertainty of misdetection and α  is the accurateness, i.e., the rate of

correct predictions in car detecting. Suppose there are two sources of evidence  S1  and  S2  from different

modalities. Each of these sources provides a list of detections as A={a ,a ,…,a } and B={b ,b ,…,b }. Then, three

propositions can be defined regarding the possible association of two detections a  and b  as:

{1} if a  and b  are the same object;

{0} if a  and b  are not the same object
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{0,1} for the ignorance of association.

The belief of association can be determined according to both location and category similarities. The evidence for

location similarity is defined according to the Mahalanobis distance as

(2)

where    measure the similarity with respect to the Mahalanobis

distance  d   and a scaling factor  λ  and  α is an evidence discounting factor. For the category similarity, two

detections belonging to the same category is too weak to provide evidence that they are the same object. However,

if two detections are of different categories, it is reasonable to assign evidence to the proposition that they are not

the same object. Accordingly, the evidence for category similarity is given by

(3)

where the mass evidence is fused if no common category hypothesis is shared, i.e., A∩B=∅. The rest of the

evidence is placed in the ignorance hypothesis. Finally, for each detection pair, the category similarity and the

location similarity are fused according to Yager’s combination rule . Evidential fusion provides a reliable

framework for information fusion. However, it cannot be directly applied to neural-network-based detectors that

make predictions on a single hypothesis. To address this problem, conformal prediction  can be used to

generate confidence sets from a trained network using a small amount of calibration data.
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