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The decline curve analysis (DCA) technique is the simplest, fastest, least computationally demanding, and least data-

required reservoir forecasting method. Assuming that the decline rate of the initial production data will continue in the

future, the estimated ultimate recovery (EUR) can be determined at the end of the well/reservoir lifetime based on the

declining mode. Many empirical DCA models have been developed to match different types of reservoirs as the decline

rate varies from one well/reservoir to another. In addition to the uncertainties related to each DCA model’s performance,

structure, and reliability, any of them can be used to estimate one deterministic value of the EUR, which, therefore, might

be misleading with a bias of over- and/or under-estimation. To reduce the uncertainties related to the DCA, the EUR could

be assumed to be within a certain range, with different levels of confidence. Probabilistic decline curve analysis (pDCA) is

the method used to generate these confidence intervals (CIs), and many pDCA approaches have been introduced to

reduce the uncertainties that come with the deterministic DCA.
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1. Introduction

Different decline curve analysis (DCA) models have been recently developed and used, especially for unconventional

shale reservoirs . There are several uncertainties in estimating the ultimate recovery(EUR) using one or more DCA

models . To assess the uncertainty in reserve estimations based on DCA, analysts are increasingly using

probabilistic techniques because the results are based on a statistical study of historical data, which frequently have a lot

of noise . When production profiles show an unknown behavior at a late time during an evaluation of the reservoirs,

uncertainty analysis is extremely important. Hence, it is essential to predict production using a probabilistic methodology

.

The challenge in estimating probabilistic reserves using DCA is not only in determining how to identify the probabilistic

features of complicated production data sets but also in determining which approach (i.e., set of steps) should be followed

to improve the reliability of the uncertainty quantification and forecasting of the reserve with a higher level of confidence.

2. pDCA Approaches

pDCA is one of the analysis tools used to quantify and reduce uncertainties. However, the basis of analysis also carries

uncertainties. Those uncertainties are mainly related to the assumptions of the probability distributions of the parameters,

the sampling techniques, and the computational time. All of these reasons and more have led to the development of

several pDCA approaches to make it more effective in predicting the production and narrowing the bounds of P , P ,

and P .

As mentioned earlier, pDCA is based on providing probability distributions of the parameters of a selected DCA model(s).

Here, some questions should be asked, such as: Which model or a combination of models should be used? What was the

used sampling technique? What is the type of probability distribution to be assumed that the model’s parameter/s are

following? What is/are the parameter(s) to be probability distributed? The different answers to and preferences of these

questions have led to the development of many pDCA approaches.

2.1. Jochen’s Approach (1996) 

Jochen and Spivey introduced the bootstrap sampling technique, which is related to DCA models . The motivation

behind this work was the reason for building the probability levels of interest (i.e., P , P , and P ) based on the

deterministic results. The simple assumption that the model’s parameters are following a certain distribution is not efficient

and easily could be wrong. The authors showed that the unreliability related to such pDCA approaches was due to the use

of the same original data to create a probability distribution of the estimator’s (i.e., the selected DCA model’s) parameters.
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Therefore, the bootstrap technique was used to resample the original data several times and the MC simulation was used

to create the probability distribution and estimate P , P , and P . Moreover, they proved that if the number of iterations

is larger than 100, the trend will be the same.

Although this method does not require previous knowledge about the prior distributions of the parameters, it assumes that

there is no relation between the original data (i.e., independent) and it follows the same distribution, which is wrong as the

production data points are, somehow, correlated, and therefore, they are considered a time-series-data structure.

Moreover, creating several synthetic data sets from the original production data make this approach computationally

intensive, as was reported in their studies.

2.2. Cheng’s Approach (2010) 

To preserve the data structure, two more steps were added to mitigate the assumptions of the Jochen approach, where

Cheng et al. introduced what they called the modified bootstrap method (MBM) . The first step was to perform a

nonlinear regression with a hyperbolic or exponential model to fit the production data, and the second step was to use a

block resampling of the autocorrelated residuals obtained from the fitted DCA model (Arps, in this case) to the actual data.

In the end, the regressed production data are then sampled several times to create synthetic data sets and the accuracy

of MBM is dependent on the block size. Table 1 states the differences between Jochen’s and Cheng’s approaches while

Figure 1 shows Cheng’s approach modifications to the bootstrap sequence.

Figure 1. A scheme that shows the modifications to Jochen’s approach by Cheng.

Table 1. The differences between Jochen’s and Cheng’s approaches.

Jochen’s Approach Cheng’s Approach

Uses bootstrap as a sampling technique

Uses Arps’ models as the DCA model

Assumes no correlation between the data points Assumes a time-series-data structure

Resampled the original data Resampled the fitted data obtained from a DCA model (Arps)

Random samples from the original data are generated Samples are generated based on autocorrelated residual blocks

In testing Cheng’s approach on 100 oil and gas wells, the coverage range (CR) was improved to 83% compared to the

original approach by Jochen (34%). It was suggested that reusing this approach after fitting the recent production history

will lead to improving the CR of future production within an 80% CI, as shown in Figure 2. This is called a backward

scenario. Conventionally, when all of the production history is used for regression, the actual performance becomes

outside of the 80% CI. On the other hand, when only the recent production history is used for regression, the actual

performance is within the 80% CI.
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Figure 2. The “backward scenario”.

Although the MBM has proven to be well-calibrated in unconventional reservoirs , it could be inferred that the efficiency

of the forecasting decreases for the far future because the interval width becomes wider.

2.3. Minin’s Approach (2011) 

The Arps relationship was utilized to analyze 150 horizontal and hydraulically fractured shale gas wells using the pDCA

approach and the conventional MC sampling method . A probability distribution was created for the initial decline rate

(D ), decline exponent (b), initial flow rate (q ), and the initial flow rate divided by the lateral length of the wells (q , n).

Additionally, they estimated the cumulative distribution functions (CDFs) for each parameter four times (i.e., one CDF after

each year of production). They concluded that with time, the b-exponent tended to decrease and stabilize, and D  tended

to increase and stabilize. This is because the flow regime is shifted with time from transient to BDF. Moreover, an

incensement of the q  could be related to the incensement of the lateral horizontal length in the case of drilling a new

development well. In addition, there could be a negative correlation between q  and the horizontal length after reaching a

certain length.

The novelty of this work was the conducted pDCA to quantify the uncertainty, and to characterize the flow regime changes

with time. It was also used to recommend a drilling design in the case of further development of wells.

2.4. Gong’s Approach (2011) 

DCA based on Bayesian statistics was first introduced by Gong . The MCMC sampling technique based on the MH

algorithm was used to obtain the posterior distribution of the Arps parameters.

The approach was tested based on 197 shale gas wells. There were two main advantages were related to this work: (1)

compared to the MBM method, this approach was 10 times faster, and (2) unlike using the MBM method, the CI did not

diverge too much in forecasting the far future. Figure 3 shows a comparison between Gong’s approach and the MBM

approach when both approaches are applied to the same dataset.

Figure 3. A comparison between Gong’s approach and the MBM approach.

2.5. Brito’s Approach (2012) 

Working on multiple wells rather than a single well, Brito introduced an approach based on a normalized rate called

production decline envelopes (PDE) . This approach allowed for analyzing multiple wells and creating decline bands

that could be used as the pDCA. This approach can be summarized in three steps, as shown in Figure 4.
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Figure 4. Summary of Brito’s approach.

The maximum, average, and minimum decline curves can be seen as P , P , and P . The probability distribution is

conducted to the initial flow rate and not to the selected DCA model parameters.

2.6. Gonzalez’s Approach (2012) 

Following the same steps proposed by Gong et al. (i.e., using the MCMC sampling technique and even the same data),

Gonzalez et al. extended this work to be combined with more than one DCA model . They used the Arps, modified

Arps, Duong’s, PLE, and SEPD models with the MCMC sampling technique. They denoted that P  using Arps was the

best amongst all of them, with the exception of the short production data, while PLE came second and performed well

using the short production data. Overall, the estimated P  from any model was more reliable than each single

deterministic reserve value. This work suggested that many DCA models can be combined with the MCMC technique.

Comparing all of them can help in minimizing uncertainty about forecasting.

2.7. Fanchi’s Approach (2013) 

Fanchi introduced a simple approach to conduct a pDCA-based approach on any selected deterministic model .

Working on 110 shale gas wells from different fields and using the Arps and SEPD models, the authors proposed the

steps of the approach shown in Figure 5. The MC simulation sampling technique was used to create a probability

distribution of the chosen model’s parameters through 1000 iterations after selecting a certain probability distribution for

them.

Figure 5. Summary of Franchi’s approach.

It should be pointed out that the study did not compare the results of the two proposed pDCA studies, and it did not

present the coverage range of both of them. Therefore, it could not be considered a comparative analysis.
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2.8. Kim’s Approach (2014) 

Appling both approaches introduced by Brito and Fanchi, but with small differences, Kim used the MC simulation sampling

technique with 5000 iterations and a triangle probability distribution for a single well analysis based on the Arps and SEPD

models (similar to Fanchi). Moreover, the PDE was applied for multiple-wells analysis, similar to Brito’s approach .

Compared to the previous works of Brito and Fanchi, Kim’s work introduced nothing new, but it used a triangle probability

distribution instead of the uniform distribution followed by Fanchi. In addition, Kim performed 5000 iterations while Fanchi

performed 1000 iterations.

2.9. Zhukovsky Approach (2016) 

Zhukovsky et al. worked on more than 200 shale oil wells . The EUR was estimated using the EEDCA model. The

authors used the MCMC simulation as the sampling technique with 100,000 iterations to estimate the posterior probability

distribution of the EUR using Matlab software. Calculating P , P , and P  from the CDF, they found that the coverage

rate of the 80% CI was 78.4% of the used DCA models, which was a good result. However, many wells showed high

average relative errors and average absolute errors related to the actual EUR. They assigned these errors to the low

quality of the data collected and being tested and not to the approach itself. Even if the resampling algorithms and

different approaches could reduce some of these errors, the heavy noise and fluctuating data could lead to unreliable

estimations.

2.10. Paryani’s Approach (2017) 

Paryani et al. introduced their approach by combining the Arp and logistic growth (LGM) models in a probability study 

. It was based on using the ABC sampling technique to approximate the complicated likelihood function of the model’s

parameters by 1000 iterations. The approach was tested based on 121 oil and gas shale wells from two different fields.

They denoted that their approach was much faster and could be combined with other deterministic DCA models. They

indicated that LGM was much better than the Arps model and provided better CRs. They also compared their approach

with Gong’s approach, as shown in Figure 6. Based on this comparison, although the two approaches bounded the

production history from P  to P , Paryani’s approach had narrower intervals, which indicated low uncertainty.

Figure 6. A comparison between Paryani’s and Gong’s approaches.

2.11. Jimenez’s Approach (2017) 

Working on tight gas reservoirs, Jiménez introduced an approach to estimate the reserves based on a probability study

. In this work, they started with a parametric study on the Arps model’s parameters D  and b to determine which

parameter affected the reserve estimation more than the other. They denoted that the b parameter had a greater effect

than the D  parameter. This was known before this work as the b exponent is the controller of the curvature degree.

Therefore, it affects the EUR value more than the D  parameter does.

Applying different DCA models (hyperbolic Arps, SEPD, PLE, and LGM), the authors determined the EUR from each

model. They proposed that SEPD was the conservative model among them. Therefore, they conducted a probability study

to calculate P , P , and P  based on the MC simulation sampling technique and Chi-square distribution of the model

parameters.

2.12. Joshi’s Approach (2018) 

Joshi used a time series analysis technique and a frequentist statistical analysis to quantify uncertainty . The LGM and

SEPD models were used to test their approach on 100 shale gas wells. Based on de-trending (i.e., subtracting the
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deterministic trend of the model from the actual data), the time series autoregressive integrated moving average (ARIMA)

model was integrated with the LGM and SEPD models to generate the CIs (i.e., P , P , and P ) around the production

forecast.

It could be inferred that by increasing the available production data for fitting, the 80% CI became narrower (i.e., the

uncertainty decreased), as shown in Figure 7.

Figure 7. Results of Joshi’s approach when increasing the production data being fitted from (a–c).

Additionally, the authors also compared their approach with Gong’s approach, and they denoted that Gong’s approach

was much more reliable as it had narrower CIs, as shown in Figure 8 . The comparison could be considered as

evidence of the effectiveness of the pDCA approach based on Bayesian analysis compared to the pDCA approach based

on frequentist analysis.

Figure 8. A comparison between Gong’s and Joshi’s approaches.

2.13. Hong’s Approach (2019) 

Hong worked on nearly 69 unconventional oil wells from two different fields . Four DCA models—Arps, SEPD, LGM,

and Pan—were used. Using MATLAB software (MathWorks 2017a), they fitted each model 10 times using the cross-

validation technique instead of the least squares estimation, which is commonly used in non-linear regression. This

technique helped in improving the curve-fitting. The motivation behind this work was to determine which DCA model had

the highest potential to perform pDCA among the other models. After choosing the prospective DCA model, the MC

simulation sampling technique was used to generate a uniform distribution of the model’s parameters.

The authors concluded that the goodness of fitting was not a condition for the best model, but the best model was that

one able to represent the actual flow behaviors. They also denoted that a large production history may not reduce the

model’s uncertainty. Finally, and based on their work, Arps and LGM became more optimistic in estimating the reserve

compared to the SEPD and Pan models. They did not indicate the number of iterations used to generate the uniform

distribution or the computational time, which would have been important for evaluating their approach compared to other

approaches.

2.14. Fanchi’s New Approach (2020) 

Fanchi introduced his pDCA approach after working on 15 shale oil wells in two different fields . Using the MC

simulation sampling technique, he created a uniform probability distribution of the used DCA models (Arps and SEPD)

with 1000 iterations. The P , P , and P  were also estimated for both models. The study did not compare the results of

the two proposed pDCA studies and denoted nothing about each study’s coverage. Therefore, it could not be considered
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a comparative analysis. The difference between this work and his previous work is that the domain of this study was shale

oil while that of the previous work was shale gas.

2.15. Korde’s Approach (2021) 

Korde et al. worked on 74 conventional and unconventional wells (51 gas wells and 23 oil wells) to introduce their

approach . They used five DCA models (Arps, PLE, Duong, SEPD, and LGM). They assessed each DCA model based

on three Bayesian sampling techniques (Gibbs, MH, and ABC). The probability distribution used was the maximum

likelihood distribution. They introduced two ways to conduct the pDCA. The first was to choose one DCA model and

evaluate the performance of the sampling techniques. They found that LGM performed well with all the sampling

techniques except for MH. The second was to choose one sampling technique and evaluate the performance of all the

DCA models. They found that the Gibbs algorithm performed well with all the DCA models except the Arps model. The

computational time for each pDCA was between 2 and 25 s.

Figure 9 shows the different Bayesian sampling algorithms used in conjunction with the Arps model. It is easy to see how

the interval width (IW) was the largest with the Gibbs algorithm and the lowest with the ABC algorithm. The author

suggested that by preprocessing the data and reducing the noise, the IW was improved and the prediction errors were

reduced.

Figure 9. The different Bayesian sampling algorithms that were used in conjunction with the Arps model: (a) MH

algorithm, (b) Gibbs algorithm, and (c) ABC algorithm.

The authors also concluded that, adding more production data to the pDCA model improved its results. Therefore,

conducting more than pDCA helped to assure the results of the EUR.

The major differences between the aforementioned pDCA approaches are clearly stated and summarized in Table 2. The

sampling techniques, the study domain, the selected models, and the used probability distributions are categorized and

compared.

Table 2. Summary of the pDCA approaches .

pDCA Model Probabilistic
Technique

Sampling
Technique(s)

No. of
Integrations Computational Time Used Probability

Distribution

Jochen (1996) Frequentist
Analysis

MC
Bootstrap >100 6.5 h -

Cheng (2010) Frequentist
Analysis

MC
Bootstrap  More than 6.5 h -

Minin (2011) Bayesian
Analysis

MC
Latin

Hypercube
- - Uniform

Brito (2012) Bayesian
Analysis MC - - Uniform

Gong (2011) Bayesian
Analysis

MCMC
MH 2000 25 min Approximate

posterior

Gonzalez (2012) Bayesian
Analysis

MCMC
MH 1000 25 min Approximate

posterior

Fanchi (2013) Bayesian
Analysis MC 1000 - Uniform
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pDCA Model Probabilistic
Technique

Sampling
Technique(s)

No. of
Integrations Computational Time Used Probability

Distribution

Kim (2014) Bayesian
Analysis MC 5000 - Triangle

Zhukovsky (2016) Bayesian
Analysis

MCMC
MH 100,000 25 min Approximate

posterior

Paryani (2017) Bayesian
Analysis

MCMC
ABC
MC

ABC
Rejection

ABC

10,000 Faster than Gong
(2011)

Likelihood-free
approximation

Jimenez (2017) Bayesian
Analysis MC - - Chi-square

Joshi (2018) Frequentist
Analysis Time series    

Hong (2019) Bayesian
Analysis MC - - Uniform

Fanchi (2020) Bayesian
Analysis MC 1000 - Uniform

Korde (2021) Bayesian
Analysis

MCMC
Gibbs

MH
ABC

20,000 5–25 s Likelihood

pDCA Model The Study Domain The Combined DCA
Model(s) Reference

Jochen (1996) Conventional oil wells,
two different fields Arps

Cheng (2010) Conventional mature oil and gas wells;
100 wells Arps

Minin (2011) Shale gas reservoirs;
150 gas wells Arps

Brito (2012) Conventional oil wells PDE

Gong (2011) Shale gas reservoirs;
197 gas wells Arps

Gonzalez (2012) Shale gas reservoirs;
197 gas wells

Arps, PLE, SEPD,
and Duong

Fanchi (2013) Shale gas reservoirs;
110 gas wells Arps and SEPD

Kim (2014) Shale gas reservoirs;
4 gas wells

Arps, SEPD,
and PDE

Zhukovsky
Approach (2016)

Shale reservoirs;
199 shale oil wells EEDCA

Paryani (2017)
Unconventional reservoirs;
21 oil wells (Eagle Ford) and
100 gas wells (Barnett Shale)

Arps and LGM

Jimenez Approach
(2017)

Tight gas reservoir;
1 gas well

Arps, SEPD, PLE, LGM,
and Duong

Joshi Approach
(2018)

Shale reservoirs;
100 shale gas wells LGM and SEPD

Hong (2019)
Unconventional shale oil;
Bakken field, 28 wells, and

Midland field, 31 wells

Arps, SEPD, LGM, and
Pan

Fanchi (2020)
Unconventional shale oil;
Bakken field, 9 wells, and

Eagle Ford, 6 wells
Arps and SEPD
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pDCA Model Probabilistic
Technique

Sampling
Technique(s)

No. of
Integrations Computational Time Used Probability

Distribution

Korde (2021)
Conventional and unconventional reservoirs;

23 oil wells and
51 gas wells

Arps, SEPD, PLE,
Duong, and LGM
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