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Actin participates in the formation of highly differentiated myofibrils under the regulation of actin-binding proteins

(ABPs), which provides a structural basis for the contractile function and morphological change in cardiomyocytes.

actin-binding proteins cardiac hypertrophy F-actin fetal genes

| 1. Introduction

The microfilament cytoskeleton is mainly composed of actin and actin-binding proteins (ABPs). Actin is one of the
most abundant cytoskeletal proteins in eukaryotes and is involved in cell morphology change, migration, division
and other cellular processes 2, Actin takes two forms in cells: actin monomers (also known as globular actin, G-
actin) and actin filaments (also known as filamentous actin, F-actin). Actin dynamics are finely regulated by a
variety of ABPs (Table 1) . Actin is involved in the formation of sarcomeres in cardiomyocytes [l The straight and
uniform sarcomeric F-actin is critical for the contractile function of muscle &, In addition, actin assembly is thought
to be related with autophagy ElZl. The inhibition of F-actin disassembly can suppress autophagosome formation &,
Several studies have found that F-actin is significantly accumulated abnormally in hypertrophic cardiomyocytes &
(911 The dysregulation of F-actin accumulation may lead to cardiac hypertrophy through disrupting autophagy

and sarcomeric structure. The function of ABPs in the development of cardiac hypertrophy has been gradually

elucidated.
Table 1. Actin-binding proteins.
Types ABPs Basic Function Refs.
G_—ac.tln- Profilin, thymosin 34, cofilin Bound to G-actin (31112][13]
binding
Factin- Dystrophin, tropomyosin Bound to F-actin HEIRS
binding
Actin- Formin, Arp2/3 complex, proteins with Nucleation to initiate actin [2]15][16]
nucleating tandem WH2 domains, leiomodin polymerization i
Actin- . . . [3][16]
. Formin, tetramers of Ena/VASP Regulation of actin assembly
elongating
Actin- Lo . . Causes parallel F-actin filaments to 1811291201
bundiing Fimbrin/Plastin, hhLIM, gelsolin closely pack together 21]
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Types ABPs Basic Function Refs.
[22][23][24]
Severing ADF/cofilin, gelsolin, twinfilin, FRL-a, INF-2 Severs F-actin [25]126]
Canpin Twinfilin, gelsolin, tropomodulin, CapZ, Caps F-actin to inhibit actin Bl[27](28]
bping Arp2/3 complex polymerization [29]
Motor Myosin Cargo transfer (29

| 2. ABPs in Cardiac Hypertrophy
2.1. Profilin-1

Profilin is widely expressed in most eukaryotes and has a molecular weight of about 17 kDa 81l There are various
profilin isoforms expressed in different tissues. Profilin-1 is universally expressed, profilin-2 is specifically
expressed in the brain and profilin-3 and profilin-4 are specifically expressed in kidney and testis, respectively 22,
Profilin accelerates the nucleotide exchange of G-actin and delivers ATP-G-actin to the growing barbed ends of F-
actin through interacting with the poly-proline motifs of formin, vasodilator-stimulated phosphoprotein (VASP) and
CDC42-activated Wiskott Aldrich syndrome protein (WASP)/WASP family [121[33][34][35]

Profilin-1 is directly associated with cardiac hypertrophy [28l. Overexpression of profilin-1 in the vascular tissues of
FVB/N mice leads to vascular remodeling and hypertension by increasing actin aggregation, which provides
mechanical stress for the development of cardiac hypertrophy [BZ[38l |t has been shown that the protein level of
profilin-1 is significantly increased in mammalian hypertrophic hearts (Figure 1). The myocardin-related
transcription factor megakaryoblastic leukemia (MKL) induces the expression of the signal transducer and activator
of transcription 1 (STAT1) via its SAP-domain (SAF-A/B, acinus and PIAS protein domain) activity, which
upregulates PFN expression B2, Whether this is the explanation for the increased protein level of profilin in cardiac
hypertrophy remains to be investigated. In cardiomyocytes, the functional abnormality of profilin-1 can change the
abundance or activity of multiple proteins associated with cardiomyopathy. For example, the overexpression of
profilin-1 can contribute to decreases in the phosphorylation level of endothelial nitric oxide synthases (eNOS) at
Ser1177 in the hearts of spontaneous hypertensive rats 2. Levels of atrial natriuretic peptide (ANP), brain
natriuretic peptide (BNP), skeletal muscle a-actin (a-SMA) and phosphorylated ERK1/2 (active form) were
significantly increased in neonatal rat ventricular myocytes (NRVMs) following stimulation by phenylephrine or
endothelin 1, which can be inhibited by siRNA-directed PFN1 silencing 28, Increased phosphorylation of ERK1/2
activates the mechanistic (mammalian) target of rapamycin complex 1 (mTORC1) that subsequently inhibits
autophagy 941421 |t may be a potential key mechanism of cardiac hypertrophy mediated by the dysregulation of
profilin-1 (Figure 1). Additionally, the inhibition of Rho-associated coiled-coil-containing protein kinase pathway
(ROCK) can suppress the upregulation of profilin-1 induced by advanced glycation end products (AEGS) in H9c2
cells 431, By comparison, overexpression of PFN1 results in the reactivation of fetal genes (NPPA and NPPB), an
increase in F-actin in myocardium and destruction of myofibrils 28], These processes can be reversed by inhibiting
the expression of profilin-1 . The inhibition of profilin-1 expression in H9c2 cells and Sprague—Dawley rats can

attenuate cardiac hypertrophy induced by AEGs “3l44 |n Drosophila, myocyte-specific overexpression of profilin
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leads to disorders in muscle fibers and sarcomeres, which result in damaged muscle ultrastructure and function
(36]

/

Damaged

1

Sarcomere N Card iac
_____ Hypertrophy related genes
p - —~ SN t p (Nppa, etc.) ngertrophy

S — e — —— T T — e — ——

Figure 1. Profilin-1 mediates cardiac hypertrophy. In normal cardiomyocytes, profilin-1 is at a basal level and
the fetal genes are not activated. Pathological stimuli increase the protein level of profilin-1, which results in
ERKZ1/2 activation, F-actin accumulation and eNOS inhibition. This results in the reactivation of hypertrophy-related
genes, inhibition of autophagy and damage to sarcomere structure and, ultimately, the development of cardiac

hypertrophy.
2.2. ADFICofilin

Actin-depolymerizing factor (ADF)/cofilin consists of a single ADF homologous domain and has a molecular weight
of about 15 kDa. The ADF/cofilin family contains ADF (also known as destrin, mainly expressed in endothelial and
epithelial cells) and two cofilin isoforms (cofilin-1 is universal and cofilin-2 is cardio-specific) 4248l ADF/cofilin can
bind to both G-actin and F-actin and can sever and depolymerize F-actin in regulating actin dynamics, which
contributes to the cell contractility power 2. The activity of cofilin is regulated by phosphorylation primarily from the
ROCK/Lin-11, Isll and MEC-3 domain kinase (LIMK)/cofilin signaling pathway (Figure 2) 48491 Cofilin is

inactivated via phosphorylation.
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Figure 2. Proposed roles of cofilin-2 in cardiac hypertrophy. Neurohumoral factors (e.g., Ang Il, ET 1 and
leptin) lead to cofilin-2 phosphorylation through the RhoA/ROCKI/LIMK signaling pathway. Phosphorylated cofilin-2
can lead to F-actin accumulation, which may subsequently contribute to cardiac hypertrophy through disrupting
autophagy. In addition, it promotes the activation of ERK1/2 and p38, which contributes to the inhibition of

autophagy and the reactivation of hypertrophy-related genes, which subsequently cause cardiac hypertrophy.

The abundance change in cofilin-2 does not play a role in the morphogenesis of neonatal rat cardiomyocytes 29,
while its activity is closely associated with the development of cardiac hypertrophy. The levels of phosphorylated
cofilin-2 are increased in myocardial hypertrophy through the activation of LIM-kinase (LIMK) by ROCK, which is
induced by multiple neurohumoral factors, such as angiotensin Il B2l endothelin 1 1 and leptin 19531, |n
hypertrophic cardiomyocytes, the increase in levels of phosphorylated cofilin-2 results in an increase in F-actin/G-
actin ratios and the levels of phosphorylated ERK1/2 and p38 [LUB3IB4I55156] v.27632 (1 an inhibitor of ROCK,
can reduce the levels of phosphorylated cofilin-2 through the inhibition of ROCK activity, which attenuates
endothelin-1-induced neonatal cardiomyocyte hypertrophy, whereas this is achieved in ginseng (Panax
quinquefolius) B4 through inhibition of p115Rho guanine nucleotide exchange factor (GEF) activity, which inhibits
leptin-induced cardiac hypertrophy. In addition, WD-repeat domain 1 (WDR1), a major cofactor of the ADF/cofilin,

has been reported to protect myocardium from myocardial hypertrophic stimuli &

2.3. Formin

Formin is a type of multidomain protein consisting of 7 subfamilies and 15 members in human genes. Formins are
characterized by the presence of two conserved domains: formin homology 1 (FH1) and FH2. FH1 binds to the
profilin—actin complex via poly-proline sequences and brings the G-actin to FH2, which promotes actin nucleation
and polymerization EIB7,
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2.4. CapZ

CapZ, a type of capping protein, anchors F-actin to the Z disc and regulates actin turnover, which contributes to
sarcomere structural changes B85, pP|P2, a downstream effector of RAC1, can promote the dissociation of CapZ
from F-actin by weakening their binding affinity [26162]

Overexpression of CapZ in transgenic mice can lead to fatal cardiac hypertrophy B9, It has been shown that
hypertrophic agonists, phenylephrine or endothelin can reduce the binding affinity between CapZ and F-actin via
PIP2-dependent pathways in NRVMs 83 This may result in sarcomere remodeling, which induces cardiac
hypertrophy. The cyclic mechanical strain activates downstream focal adhesion kinase (FAK) via the
mechanotransduction of integrin, which then activates phosphatidylinositol 4-phosphate 5-kinase (PIP5K) through
the RhoA/ROCK pathway. PIP5K phosphorylates phosphatidylinositol 4-phosphate (PI4P) in order to produce
PIP2, which reduces the affinity of CapZ and F-actin binding, which contributes to the dysregulation of F-actin
assembly and cardiac hypertrophy (Figure 3) [62](641[65](66]

Mechanical strain

il Phenylephrine

or endothelin.

\Cardiac hypertrophy

Figure 3. CapZ regulates cardiac hypertrophy. Mechanotransduction leads to the activation of RhoA/Rho-kinase
pathway through integrins, which reduce the binding affinity of CapZ and F-actin. It subsequently causes cardiac
hypertrophy.
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