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Actin participates in the formation of highly differentiated myofibrils under the regulation of actin-binding proteins

(ABPs), which provides a structural basis for the contractile function and morphological change in cardiomyocytes.
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1. Introduction

The microfilament cytoskeleton is mainly composed of actin and actin-binding proteins (ABPs). Actin is one of the

most abundant cytoskeletal proteins in eukaryotes and is involved in cell morphology change, migration, division

and other cellular processes . Actin takes two forms in cells: actin monomers (also known as globular actin, G-

actin) and actin filaments (also known as filamentous actin, F-actin). Actin dynamics are finely regulated by a

variety of ABPs (Table 1) . Actin is involved in the formation of sarcomeres in cardiomyocytes . The straight and

uniform sarcomeric F-actin is critical for the contractile function of muscle . In addition, actin assembly is thought

to be related with autophagy . The inhibition of F-actin disassembly can suppress autophagosome formation .

Several studies have found that F-actin is significantly accumulated abnormally in hypertrophic cardiomyocytes 

. The dysregulation of F-actin accumulation may lead to cardiac hypertrophy through disrupting autophagy

and sarcomeric structure. The function of ABPs in the development of cardiac hypertrophy has been gradually

elucidated.

Table 1. Actin-binding proteins.
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Types ABPs Basic Function Refs.

G-actin-
binding

Profilin, thymosin β4, cofilin Bound to G-actin

F-actin-
binding

Dystrophin, tropomyosin Bound to F-actin

Actin-
nucleating

Formin, Arp2/3 complex, proteins with
tandem WH2 domains, leiomodin

Nucleation to initiate actin
polymerization

Actin-
elongating

Formin, tetramers of Ena/VASP Regulation of actin assembly

Actin-
bundling

Fimbrin/Plastin, hhLIM, gelsolin
Causes parallel F-actin filaments to

closely pack together
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2. ABPs in Cardiac Hypertrophy

2.1. Profilin-1

Profilin is widely expressed in most eukaryotes and has a molecular weight of about 17 kDa . There are various

profilin isoforms expressed in different tissues. Profilin-1 is universally expressed, profilin-2 is specifically

expressed in the brain and profilin-3 and profilin-4 are specifically expressed in kidney and testis, respectively .

Profilin accelerates the nucleotide exchange of G-actin and delivers ATP-G-actin to the growing barbed ends of F-

actin through interacting with the poly-proline motifs of formin, vasodilator-stimulated phosphoprotein (VASP) and

CDC42-activated Wiskott Aldrich syndrome protein (WASP)/WASP family .

Profilin-1 is directly associated with cardiac hypertrophy . Overexpression of profilin-1 in the vascular tissues of

FVB/N mice leads to vascular remodeling and hypertension by increasing actin aggregation, which provides

mechanical stress for the development of cardiac hypertrophy . It has been shown that the protein level of

profilin-1 is significantly increased in mammalian hypertrophic hearts (Figure 1). The myocardin-related

transcription factor megakaryoblastic leukemia (MKL) induces the expression of the signal transducer and activator

of transcription 1 (STAT1) via its SAP-domain (SAF-A/B, acinus and PIAS protein domain) activity, which

upregulates PFN expression . Whether this is the explanation for the increased protein level of profilin in cardiac

hypertrophy remains to be investigated. In cardiomyocytes, the functional abnormality of profilin-1 can change the

abundance or activity of multiple proteins associated with cardiomyopathy. For example, the overexpression of

profilin-1 can contribute to decreases in the phosphorylation level of endothelial nitric oxide synthases (eNOS) at

Ser1177 in the hearts of spontaneous hypertensive rats . Levels of atrial natriuretic peptide (ANP), brain

natriuretic peptide (BNP), skeletal muscle α-actin (α-SMA) and phosphorylated ERK1/2 (active form) were

significantly increased in neonatal rat ventricular myocytes (NRVMs) following stimulation by phenylephrine or

endothelin 1, which can be inhibited by siRNA-directed PFN1 silencing . Increased phosphorylation of ERK1/2

activates the mechanistic (mammalian) target of rapamycin complex 1 (mTORC1) that subsequently inhibits

autophagy . It may be a potential key mechanism of cardiac hypertrophy mediated by the dysregulation of

profilin-1 (Figure 1). Additionally, the inhibition of Rho-associated coiled-coil-containing protein kinase pathway

(ROCK) can suppress the upregulation of profilin-1 induced by advanced glycation end products (AEGs) in H9c2

cells . By comparison, overexpression of PFN1 results in the reactivation of fetal genes (NPPA and NPPB), an

increase in F-actin in myocardium and destruction of myofibrils . These processes can be reversed by inhibiting

the expression of profilin-1 . The inhibition of profilin-1 expression in H9c2 cells and Sprague–Dawley rats can

attenuate cardiac hypertrophy induced by AEGs . In Drosophila, myocyte-specific overexpression of profilin

Types ABPs Basic Function Refs.

Severing ADF/cofilin, gelsolin, twinfilin, FRL-α, INF-2 Severs F-actin

Capping
Twinfilin, gelsolin, tropomodulin, CapZ,

Arp2/3 complex
Caps F-actin to inhibit actin

polymerization

Motor Myosin Cargo transfer

[22][23][24]

[25][26]

[3][27][28]

[29]

[30]

[31]

[32]

[12][33][34][35]

[36]

[37][38]

[39]

[9]

[36]

[40][41][42]

[43]

[36]

[9]

[43][44]



Actin-Binding Proteins in Cardiac Hypertrophy | Encyclopedia.pub

https://encyclopedia.pub/entry/35585 3/10

leads to disorders in muscle fibers and sarcomeres, which result in damaged muscle ultrastructure and function

.

Figure 1. Profilin-1 mediates cardiac hypertrophy. In normal cardiomyocytes, profilin-1 is at a basal level and

the fetal genes are not activated. Pathological stimuli increase the protein level of profilin-1, which results in

ERK1/2 activation, F-actin accumulation and eNOS inhibition. This results in the reactivation of hypertrophy-related

genes, inhibition of autophagy and damage to sarcomere structure and, ultimately, the development of cardiac

hypertrophy.

2.2. ADF/Cofilin

Actin-depolymerizing factor (ADF)/cofilin consists of a single ADF homologous domain and has a molecular weight

of about 15 kDa. The ADF/cofilin family contains ADF (also known as destrin, mainly expressed in endothelial and

epithelial cells) and two cofilin isoforms (cofilin-1 is universal and cofilin-2 is cardio-specific) . ADF/cofilin can

bind to both G-actin and F-actin and can sever and depolymerize F-actin in regulating actin dynamics, which

contributes to the cell contractility power . The activity of cofilin is regulated by phosphorylation primarily from the

ROCK/Lin-11, Isl1 and MEC-3 domain kinase (LIMK)/cofilin signaling pathway (Figure 2) . Cofilin is

inactivated via phosphorylation.
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Figure 2. Proposed roles of cofilin-2 in cardiac hypertrophy. Neurohumoral factors (e.g., Ang II, ET 1 and

leptin) lead to cofilin-2 phosphorylation through the RhoA/ROCK/LIMK signaling pathway. Phosphorylated cofilin-2

can lead to F-actin accumulation, which may subsequently contribute to cardiac hypertrophy through disrupting

autophagy. In addition, it promotes the activation of ERK1/2 and p38, which contributes to the inhibition of

autophagy and the reactivation of hypertrophy-related genes, which subsequently cause cardiac hypertrophy.

The abundance change in cofilin-2 does not play a role in the morphogenesis of neonatal rat cardiomyocytes ,

while its activity is closely associated with the development of cardiac hypertrophy. The levels of phosphorylated

cofilin-2 are increased in myocardial hypertrophy through the activation of LIM-kinase (LIMK) by ROCK, which is

induced by multiple neurohumoral factors, such as angiotensin II , endothelin 1  and leptin . In

hypertrophic cardiomyocytes, the increase in levels of phosphorylated cofilin-2 results in an increase in F-actin/G-

actin ratios and the levels of phosphorylated ERK1/2 and p38 . Y-27632 , an inhibitor of ROCK,

can reduce the levels of phosphorylated cofilin-2 through the inhibition of ROCK activity, which attenuates

endothelin-1-induced neonatal cardiomyocyte hypertrophy, whereas this is achieved in ginseng (Panax

quinquefolius)  through inhibition of p115Rho guanine nucleotide exchange factor (GEF) activity, which inhibits

leptin-induced cardiac hypertrophy. In addition, WD-repeat domain 1 (WDR1), a major cofactor of the ADF/cofilin,

has been reported to protect myocardium from myocardial hypertrophic stimuli .

2.3. Formin

Formin is a type of multidomain protein consisting of 7 subfamilies and 15 members in human genes. Formins are

characterized by the presence of two conserved domains: formin homology 1 (FH1) and FH2. FH1 binds to the

profilin–actin complex via poly-proline sequences and brings the G-actin to FH2, which promotes actin nucleation

and polymerization .
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2.4. CapZ

CapZ, a type of capping protein, anchors F-actin to the Z disc and regulates actin turnover, which contributes to

sarcomere structural changes . PIP2, a downstream effector of RAC1, can promote the dissociation of CapZ

from F-actin by weakening their binding affinity .

Overexpression of CapZ in transgenic mice can lead to fatal cardiac hypertrophy . It has been shown that

hypertrophic agonists, phenylephrine or endothelin can reduce the binding affinity between CapZ and F-actin via

PIP2-dependent pathways in NRVMs . This may result in sarcomere remodeling, which induces cardiac

hypertrophy. The cyclic mechanical strain activates downstream focal adhesion kinase (FAK) via the

mechanotransduction of integrin, which then activates phosphatidylinositol 4-phosphate 5-kinase (PIP5K) through

the RhoA/ROCK pathway. PIP5K phosphorylates phosphatidylinositol 4-phosphate (PI4P) in order to produce

PIP2, which reduces the affinity of CapZ and F-actin binding, which contributes to the dysregulation of F-actin

assembly and cardiac hypertrophy (Figure 3) .

Figure 3. CapZ regulates cardiac hypertrophy. Mechanotransduction leads to the activation of RhoA/Rho-kinase

pathway through integrins, which reduce the binding affinity of CapZ and F-actin. It subsequently causes cardiac

hypertrophy.
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